26 research outputs found

    Utilization of Lidar Intensity Data and Passive Visible Imagery for Geological Mapping of Planetary Surfaces

    Get PDF
    While lidar has been historically used for generating digital terrain maps and as a navigation tool, recent research demonstrates that lidar has many potential scientific applications, including high resolution analysis of geological outcrops. Case studies were completed at the Tunnunik impact structure, Victoria Island, Arctic Canada, and the Nickel Rim South mine, Sudbury, Canada, to assess the fidelity of characterizing and differentiating mineralogical and lithological units remotely by integrating passive visible imagery with lidar intensity data. Unsupervised classification via k-means clustering was performed on the fused datasets, with results indicating that lithologies can indeed be successfully differentiated with minor a priori knowledge of the setting. Semi-quantitative analysis through XRD of Tunnunik samples demonstrates that distance-corrected intensity is linked in a linear relationship with both dolomite and clay content. The simultaneous acquisition of both geospatial and scientific data greatly increases the applications and value of using lidar, especially for mining, geological mapping in remote environments, and for future planetary missions

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link
    corecore