4,807 research outputs found

    Mott Insulator-Superfluid Transition in a Generalized Bose-Hubbard Model with Topologically Non-trivial Flat-Band

    Full text link
    In this paper, we studied a generalized Bose-Hubbard model on a checkerboard lattice with topologically nontrivial flat-band. We used mean-field method to decouple the model Hamiltonian and obtained phase diagram by Landau theory of second-order phase transition. We further calculate the energy gap and the dispersion of quasi-particle or quasi-hole in Mott insulator state and found that in strong interaction limit the quasi-particles or the quasi-holes also have flat bands.Comment: 13 figures, 9 page

    3D quantum Hall effect of Fermi arcs in topological semimetals

    Full text link
    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d-2)-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3_3As2_2, or Na3_3Bi. This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.Comment: 5 pages, 3 figure
    • …
    corecore