2,015 research outputs found

    Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals

    Get PDF
    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π\pi Berry phase to induce a phase shift of ±1/8\pm 1/8 in the quantum oscillation (++ for hole and −- for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1/8\pm 1/8 and ±5/8\pm 5/8. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1/8\pm 1/8 or ±5/8\pm 5/8, as a function of the Fermi energy. Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd2_2As3_3 and should be helpful for exploring the Berry phase in various 3D systems.Comment: 5 pages, 3 figures, with Supplemental Materia

    Intervalley Scattering and Localization Behaviors of Spin-Valley Coupled Dirac Fermions

    Get PDF
    We study the quantum diffusive transport of multivalley massive Dirac cones, where time-reversal symmetry requires opposite spin orientations in inequivalent valleys. We show that the intervalley scattering and intravalley scattering can be distinguished from the quantum conductivity that corrects the semiclassical Drude conductivity, due to their distinct symmetries and localization trends. In immediate practice, it allows transport measurements to estimate the intervalley scattering rate in hole-doped monolayers of group-VI transition metal dichalcogenides (e.g., molybdenum dichalcogenides and tungsten dichalcogenides), an ideal class of materials for valleytronics applications. The results can be generalized to a large class of multivalley massive Dirac systems with spin-valley coupling and time-reversal symmetry.Comment: 5 pages+4 pages of supplemental materials, 4 figure

    Revealing A Head-on Major Merger in the Nearby NGC 6338 Group with Chandra and VLA observations

    Full text link
    By analyzing the Chandra archival data of the nearby NGC 6338 galaxy group, we identify two X-ray bright clumps (N-clump and S-clump) within the central 100 kpc, and detect an arc-like X-ray brightness discontinuity at the south boundary of the N-clump, which is defined as a cold front with a gas flow Mach number of M<0.8. Furthermore, at the north-east boundary of the S-clump (dominated by galaxy NGC 6338) another X-ray edge is detected that corresponds to a weaker cold front. Therefore, the two clumps are approaching each other approximately from opposite directions, and the group is undergoing a head-on collision that is in a stage of pre-core passage. This merger scenario is also supported by the study of the line-of-sight velocity distribution of the group member galaxies. The merger mass ratio is about 1:1.8 as estimated from the central gas temperature of the two clumps, which suggests the merger is most likely to be a major merger. We also analyze the VLA 1.4 and 4.9 GHz radio data, but we do not detect any extended radio emission that is associated with the merger.Comment: Accepted by Ap

    Vortex images on Ba{1-x}KxFe2As2 observed directly by the magnetic force microscopy

    Full text link
    The vortex states on optimally doped Ba0.6K0.4Fe2As2 and underdoped Ba0.77K0.23Fe2As2 single crystals are imaged by magnetic force microscopy at various magnetic fields below 100 Oe. Local triangular vortex clusters are observed in optimally doped samples. The vortices are more ordered than those in Ba(Fe{1-x}Co{x})2As2, and the calculated pinning force per unit length is about 1 order of magnitude weaker than that in optimally Co-doped 122 at the same magnetic field, indicating that the Co doping at the Fe sites induces stronger pinning. The proportion of six-neighbored vortices to the total amount increases quickly with increasing magnetic field, and the estimated value reaches 100% at several tesla. Vortex chains are also found in some local regions, which enhance the pinning force as well as the critical current density. Lines of vortex chains are observed in underdoped samples, and they may have originated from the strong pinning near the twin boundaries arising from the structural transition.Comment: 7 pages, 8 figure

    Massive Dirac fermions and spin physics in an ultrathin film of topological insulator

    Get PDF
    We study transport and optical properties of the surface states which lie in the bulk energy gap of a thin-film topological insulator. When the film thickness is comparable with the surface state decay length into the bulk, the tunneling between the top and bottom surfaces opens an energy gap and form two degenerate massive Dirac hyperbolas. Spin dependent physics emerges in the surface bands which are vastly different from the bulk behavior. These include the surface spin Hall effects, spin dependent orbital magnetic moment, and spin dependent optical transition selection rule which allows optical spin injection. We show a topological quantum phase transition where the Chern number of the surface bands changes when varying the thickness of the thin film.Comment: 7 pages, 5 figure
    • …
    corecore