499 research outputs found

    Finslerian dipolar modulation of the CMB power spectra at scales 2<l<6002<l<600

    Full text link
    A common explanation for the CMB power asymmetry is to introduce a dipolar modulation at the stage of inflation, where the primordial power spectrum is spatially varying. If the universe in the stage of inflation is Finslerian, and if the Finsler spacetime is non-reversible under parity flip, x→−xx\rightarrow-x, then a three dimensional spectrum which is the function of wave vector and direction is valid. In this paper, a three dimensional primordial power spectrum with preferred direction is derived in the framework of Finsler spacetime. It is found that the amplitude of dipolar modulation is related to the Finslerian parameter, which in turn is a function of wave vector. The angular correlation coefficients are presented, and the numerical results for the anisotropic correlation coefficients over the multipole range 2<l<6002<l<600 are given.Comment: 13 pages, 1 figure, accepted by EPJ

    Testing the homogeneity of the Universe using gamma-ray bursts

    Full text link
    In this paper, we study the homogeneity of the GRB distribution using a subsample of the Greiner GRB catalogue, which contains 314 objects with redshift 0<z<2.50<z<2.5 (244 of them discovered by the Swift GRB Mission). We try to reconcile the dilemma between the new observations and the current theory of structure formation and growth. To test the results against the possible biases in redshift determination and the incompleteness of the Greiner sample, we also apply our analysis to the 244 GRBs discovered by Swift and the subsample presented by the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS). The real space two-point correlation function (2PCF) of GRBs, ξ(r),\xi(r), is calculated using a Landy-Szalay estimator. We perform a standard least-χ2\chi^2 fit to the measured 2PCFs of GRBs. We use the best-fit 2PCF to deduce a recently defined homogeneity scale. The homogeneity scale, RHR_H, is defined as the comoving radius of the sphere inside which the number of GRBs N(<r)N(<r) is proportional to r3r^3 within 1%1\%, or equivalently above which the correlation dimension of the sample D2D_2 is within 1%1\% of D2=3D_2=3. For the Swift subsample of 244 GRBs, the correlation length and slope are r0=387.51±132.75 h−1r_0= 387.51 \pm 132.75~h^{-1}Mpc and γ=1.57±0.65\gamma = 1.57\pm 0.65 (at 1σ1\sigma confidence level). The corresponding scale for a homogeneous distribution of GRBs is r≥7,700 h−1r\geq 7,700~h^{-1}Mpc. The results help to alleviate the tension between the new discovery of the excess clustering of GRBs and the cosmological principle of large-scale homogeneity. It implies that very massive structures in the relatively local Universe do not necessarily violate the cosmological principle and could conceivably be present.Comment: 7 pages, 5 figures, accepted by Astronomy & Astrophysics. The data used in this work (e.g. Tables 1 and 2) are publicly available online in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A
    • …
    corecore