1,172 research outputs found

    Settlement prediction model of slurry suspension based on sedimentation rate attenuation

    Get PDF
    AbstractThis paper introduces a slurry suspension settlement prediction model for cohesive sediment in a still water environment. With no sediment input and a still water environment condition, control forces between settling particles are significantly different in the process of sedimentation rate attenuation, and the settlement process includes the free sedimentation stage, the log-linear attenuation stage, and the stable consolidation stage according to sedimentation rate attenuation. Settlement equations for sedimentation height and time were established based on sedimentation rate attenuation properties of different sedimentation stages. Finally, a slurry suspension settlement prediction model based on slurry parameters was set up with a foundation being that the model parameters were determined by the basic parameters of slurry. The results of the settlement prediction model show good agreement with those of the settlement column experiment and reflect the main characteristics of cohesive sediment. The model can be applied to the prediction of cohesive soil settlement in still water environments

    N′-(Propan-2-yl­idene)nicotinohydrazide

    Get PDF
    Crystals of the title compound, C9H11N3O, were obtained from a condensation reaction of nicotinohydrazide and acetone. In the mol­ecular structure, the pyridine ring is oriented at a dihedral angle of 36.28 (10)° with respect to the amide plane. In the crystal structure, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains

    (E)-N′-(3,4-Dichloro­benzyl­idene)nicotino­hydrazide monohydrate

    Get PDF
    In the title compound, C13H9Cl2N3O·H2O, the 3,4-dichloro­benzene ring is nearly coplanar with the pyridine ring, making a dihedral angle of 4.78 (8)°. Inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure

    FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms.

    Get PDF
    FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4(+) T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10(+) CD4(+) T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors

    N′-(3-Bromo-4-methoxy­benzyl­idene)nicotinohydrazide monohydrate

    Get PDF
    In the title compound, C14H12BrN3O2·H2O, the benzene ring is oriented at a dihedral angle of 39.66 (11)° with respect to the pyridine ring. The solvent water mol­ecule links with the organic compound via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding
    corecore