15 research outputs found

    Formaldehyde

    No full text

    Equilibrium speciation in moderately concentrated formaldehyde−methanol−water solutions investigated using 13C and 1H nuclear magnetic resonance spectroscopy

    No full text
    We used 13C and 1H NMR spectroscopy to examine the equilibrium speciation in formaldehyde−methanol−water solutions at moderate formaldehyde concentrations such as those used in the synthesis of formaldehyde-based organic gels. Concentrations of small methylene glycol oligomers and their methoxylated forms found in these solutions were quantitatively determined over a range of formaldehyde concentrations and methanol−water ratios, and at temperatures between 10 and 55 °C. Using the measured concentrations, equilibrium constants for methylene glycol dimer and trimer formation as well as methoxylation of these oligomers were calculated. Based on this, we developed a quantitative equilibrium model for calculation of formaldehyde-related species concentrations over a range compositions relevant for formaldehyde based sol−gel processes allowing for more rational design of formaldehyde polymerization systems

    Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate

    Get PDF
    Small organic molecules provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. Herein, we report that diolefin–ruthenium complexes containing the chemically and redox non-innocent ligand trop2dad catalyse the production of H2 from formaldehyde and water in the presence of a base. The process involves the catalytic conversion to carbonate salt using aqueous solutions and is the fastest reported for acceptorless formalin dehydrogenation to date. A mechanism supported by density functional theory calculations postulates protonation of a ruthenium hydride to form a low-valent active species, the reversible uptake of dihydrogen by the ligand and active participation of both the ligand and the metal in substrate activation and dihydrogen bond formation
    corecore