4 research outputs found

    Ultraviolet supercontinuum generation using a differentially-pumped integrated glass chip

    Get PDF
    We investigate the generation of ultrabroadband femtosecond ultraviolet (UV) radiation via third-order harmonic generation in highly confined gas media. A dual-stage differential-pumping scheme integrated into a glass microfluidic chip provides an exceptional gas confinement up to several bar and allows the apparatus to be operated under high-vacuum environment. UV pulses are generated both in argon and neon with up to ∼0.8 μJ energy and 0.2% conversion efficiency for spectra that cover the UVB and UVC regions between 200 and 325 nm. Numerical simulations based on the unidirectional pulse propagation equation reveal that ionization plays a critical role for extending the spectral bandwidth of the generated third-harmonic pulse beyond the tripled 800 nm driving laser pulse bandwidth. By delivering UV supercontinua supporting Fourier transform limits below 2 fs, as well as comparable pulse energies with respect to capillary-based techniques that typically provide high spectral tunability but produce narrower bandwidths, our compact device makes a step forward towards the production and application of sub-fs UV pulses for the investigation of electron dynamics in neutral molecules

    Ultraviolet supercontinuum generation using a differentially-pumped integrated glass chip

    No full text
    We investigate the generation of ultrabroadband femtosecond ultraviolet (UV) radiation via third-order harmonic generation in highly confined gas media. A dual-stage differential-pumping scheme integrated into a glass microfluidic chip provides an exceptional gas confinement up to several bar and allows the apparatus to be operated under high-vacuum environment. UV pulses are generated both in argon and neon with up to ∼0.8 μ J energy and 0.2% conversion efficiency for spectra that cover the UVB and UVC regions between 200 and 325 nm. Numerical simulations based on the unidirectional pulse propagation equation reveal that ionization plays a critical role for extending the spectral bandwidth of the generated third-harmonic pulse beyond the tripled 800 nm driving laser pulse bandwidth. By delivering UV supercontinua supporting Fourier transform limits below 2 fs, as well as comparable pulse energies with respect to capillary-based techniques that typically provide high spectral tunability but produce narrower bandwidths, our compact device makes a step forward towards the production and application of sub-fs UV pulses for the investigation of electron dynamics in neutral molecules

    A flexible beamline combining XUV attosecond pulses with few-femtosecond UV and near-infrared pulses for time-resolved experiments

    No full text
    We describe a beamline where few-femtosecond ultraviolet (UV) pulses are generated and synchronized to few-cycle near-infrared (NIR) and extreme ultraviolet (XUV) attosecond pulses. The UV light is obtained via third-harmonic generation in argon or neon gas when focusing a phase-stabilized NIR driving field inside a glass cell that was designed to support high pressures for enhanced conversion efficiency. A recirculation system allows reducing the large gas consumption required for the nonlinear process. Isolated attosecond pulses are generated using the polarization gating technique and the photon spectrometer employed to characterize the XUV radiation consists of a new design based on the combination of a spherical varied-line-space grating and a cylindrical mirror. This design allows for compactness while providing a long entrance arm for integrating different experimental chambers. The entire interferometer is built under vacuum to prevent both absorption of the XUV light and dispersion of the UV pulses and it is actively stabilized to ensure an attosecond delay stability during experiments. This table-top source has been realized with the aim of investigating UV-induced electron dynamics in neutral states of bio-relevant molecules, but it also offers the possibility to implement a manifold of novel time-resolved experiments based on photo-ionization/excitation of gaseous and liquid targets by ultraviolet radiation. UV pump – XUV probe measurements in ethyl-iodide showcase the capabilities of the attosecond beamline
    corecore