617 research outputs found
Fermionic decays of sfermions: a complete discussion at one-loop order
We present a definition of an on-shell renormalization scheme for the
sfermion and chargino-neutralino sector of the Minimal Supersymmetric Standard
Model (MSSM). Then, apply this renormalization framework to the interaction
between charginos/neutralinos and sfermions. A kind of universal corrections is
identified, which allow to define effective chargino/neutralino coupling
matrices. In turn, these interactions generate (universal) non-decoupling terms
that grow as the logarithm of the heavy mass. Therefore the full MSSM spectrum
must be taken into account in the computation of radiative corrections to
observables involving these interactions. As an application we analyze the full
one-loop electroweak radiative corrections to the partial decay widths
\Gamma(\tilde{f} -> f\neut) and \Gamma(\tilde{f} -> f'\cplus) for all sfermion
flavours and generations. These are combined with the QCD corrections to
compute the corrected branching ratios of sfermions. It turns out that the
electroweak corrections can have an important impact on the partial decay
widths, as well as the branching ratios, in wide regions of the parameter
space. The precise value of the corrections is strongly dependent on the
correlation between the different particle masses.Comment: LaTeX 53 pages, 22 figures, 3 tables. Typos correcte
Higgs Boson Flavor-Changing Neutral Decays into Bottom Quarks in Supersymmetry
We analyze the maximum branching ratios for the Flavor Changing Neutral
Current (FCNC) decays of the neutral Higgs bosons of the Minimal Supersymmetric
Standard Model (MSSM) into bottom quarks, h -> b\bar{s} (h=h^0,H^0,A^0). We
consistently correlate these decays with the radiative B-meson decays (b->
s\gamma). A full-fledged combined numerical analysis is performed of these
high-energy and low-energy FCNC decay modes in the MSSM parameter space. Our
calculation shows that the available data on B(b->s \gamma) severely restricts
the allowed values of B(h->b\bar{s}). While the latter could reach a few
percent level in fine-tuned scenarios, the requirement of naturalness reduces
these FCNC rates into the modest range B(h->b\bar{s}) ~ 10^{-4}-10^{-3}. We
find that the bulk of the MSSM contribution to B(h->b\bar{s}) could originate
from the strong supersymmetric sector. The maximum value of the FCNC rates
obtained in this paper disagree significantly with recent (over-)estimates
existing in the literature. Our results are still encouraging because they show
that the FCNC modes h->b\bar{s} can be competitive with other Higgs boson
signatures and could play a helpful complementary role to identify the
supersymmetric Higgs bosons, particularly the lightest CP-even state in the
critical LHC mass region m_{h^0} ~= 90-130 GeV.Comment: LaTeX, 19 pages, 4 tables, 7 figures. Clarifications and discussions
added, references added. Slight changes in Figs2b,6b and 7b. Version accepted
in JHE
Imaging of acute appendicitis in children: EU versus US ... or US versus CT? A European perspective
There is substantial evidence that imaging may reduce the negative appendectomy rate, also in children. However, controversy exists about the preferred method: US or CT, and the choice appears to be determined by the side of the Atlantic Ocean. This review brings forth several arguments in favour of U
Direction and magnitude of nicotine effects on the fMRI BOLD response are related to nicotine effects on behavioral performance
Considerable variability across individuals has been reported in both the behavioral and fMRI blood oxygen level-dependent (BOLD) response to nicotine. We aimed to investigate (1) whether there is a heterogeneous effect of nicotine on behavioral and BOLD responses across participants and (2) if heterogeneous BOLD responses are associated with behavioral performance measures. In this double-blind, placebo-controlled, cross-over study, 41 healthy participants (19 smokers)—drawn from a larger population-based sample—performed a visual oddball task after acute challenge with 1 mg nasal nicotine. fMRI data and reaction time were recorded during performance of the task. Across the entire group of subjects, we found increased activation in the anterior cingulate cortex, middle frontal gyrus, superior temporal gyrus, post-central gyrus, planum temporal and frontal pole in the nicotine condition compared with the placebo condition. However, follow-up analyses of this difference in activation between the placebo and nicotine conditions revealed that some participants showed an increase in activation while others showed a decrease in BOLD activation from the placebo to the nicotine condition. A reduction of BOLD activation from placebo to nicotine was associated with a decrease in reaction time and reaction time variability and vice versa, suggesting that it is the direction of BOLD response to nicotine which is related to task performance. We conclude that the BOLD response to nicotine is heterogeneous and that the direction of response to nicotine should be taken into account in future pharmaco-fMRI research on the central action of nicotine
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
Active Wnt signaling in response to cardiac injury
Although the contribution of Wnt signaling in infarct healing is suggested, its exact role after myocardial infarction (MI) still needs to be unraveled. We evaluated the cardiac presence of active Wnt signaling in vivo following MI, and investigated in which cell types active Wnt signaling was present by determining Axin2 promoter-driven LacZ expression. C57BL/6 Axin2-LacZ reporter mice were sacrificed at days 0, 1, 3, 7, 14, and 21 after LAD ligation. Hearts were snap-frozen for immunohistochemistry (IHC) or enzymatically digested to obtain a single cell suspension for flow cytometric analysis. For both FACS and IHC, samples were stained for β-galactosidase and antibodies against Sca-1, CD31, ckit, and CD45. Active Wnt signaling increased markedly in the myocardium, from 7 days post-MI onwards. Using Sca-1 and CD31, to identify progenitor and endothelial cells, a significant increase in LacZ+ cells was found at 7 and 14 days post-MI. LacZ+ cells also increased in the ckit+ and CD45+ cell population. IHC revealed LacZ+ cells co-expressing Sca, CD31, CD45, vWF, and αSMA in the border zone and the infarcted area. Wnt signaling increased significantly after MI in Sca+- and CD31+-expressing cells, suggesting involvement of Wnt signaling in resident Sca+ progenitor cells, as well as endothelial cells. Moreover, active Wnt signaling was present in ckit+ cells, leukocytes, and fibroblast. Given its broad role during the healing phase after cardiac injury, additional research seems warranted before a therapeutic approach on Wnt to enhance cardiac regeneration can be carried out safely
Speed Controls the Amplitude and Timing of the Hippocampal Gamma Rhythm
Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could encode the running speed of mice. We found that the amplitude of slow (20–45 Hz) and fast (45–120 Hz) gamma rhythms in the hippocampal local field potential (LFP) increased with running speed. The speed-dependence of gamma amplitude was restricted to a narrow range of theta phases where gamma amplitude was maximal, called the preferred theta phase of gamma. The preferred phase of slow gamma precessed to lower values with increasing running speed. While maximal fast and slow gamma occurred at coincident phases of theta at low speeds, they became progressively more theta-phase separated with increasing speed. These results demonstrate a novel influence of speed on the amplitude and timing of the hippocampal gamma rhythm which could contribute to learning of temporal sequences and navigation
The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints
We forecast the constraints on the values of sigma_8, Omega_m, and cluster
scaling relation parameters which we expect to obtain from the XMM Cluster
Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo
Markov Chain analysis of the evolution of the number density of galaxy clusters
that takes into account a detailed simulated selection function. Comparing our
current observed number of clusters shows good agreement with predictions. We
determine the expected degradation of the constraints as a result of
self-calibrating the luminosity-temperature relation (with scatter), including
temperature measurement errors, and relying on photometric methods for the
estimation of galaxy cluster redshifts. We examine the effects of systematic
errors in scaling relation and measurement error assumptions. Using only (T,z)
self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to
the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining
the normalization and slope of the luminosity-temperature relation to +-6 and
+-13 per cent (at 1sigma) respectively in the process. Self-calibration fails
to jointly constrain the scatter and redshift evolution of the
luminosity-temperature relation significantly. Additional archival and/or
follow-up data will improve on this. We do not expect measurement errors or
imperfect knowledge of their distribution to degrade constraints significantly.
Scaling-relation systematics can easily lead to cosmological constraints 2sigma
or more away from the fiducial model. Our treatment is the first exact
treatment to this level of detail, and introduces a new `smoothed ML' estimate
of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in
MNRAS. High-resolution figures available at http://xcs-home.org (under
"Publications"
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
- …