7,055 research outputs found
Angiotensin-Induced Growth Related Metabolism Is Activated in Cultured Smooth Muscle Cells From Spontaneously Hypertensive Rats and Wistar-Kyoto Rats
Smooth muscle cells from spontaneously hypertensive rats (SHR) proliferate in culture faster than those isolated from sex- and age-matched Wistar- Kyoto (WKY) animals. There was no difference in the kinetics of S6 kinase activation in the two cultures, but later metabolic events associated with proliferation were stimulated earlier in SHR cells than in WKY, eg, activation of ornithine decarboxylase. Both cell types elaborated an extensive extracellular matrix in culture composed of a different blend of connective tissue macromolecules. Matrix material from SHR cells was more stimulatory to growth of WKY cultures than their own matrices. Angiotensin stimulated the growth and synthesis of extra-cellular matrix material in SHR more than in WKY derived vascular smooth muscle cell cul-tures. Am J Hypertens 1991;4:183-18
Multi-dye theranostic nanoparticle platform for bioimaging and cancer therapy
Amit K Singh,1,2 Megan A Hahn,2 Luke G Gutwein,3 Michael C Rule,4 Jacquelyn A Knapik,5 Brij M Moudgil,1,2 Stephen R Grobmyer,3 Scott C Brown,2,61Department of Materials Science and Engineering, College of Engineering, 2Particle Engineering Research Center, College of Engineering, 3Division of Surgical Oncology, Department of Surgery, College of Medicine, 4Cell and Tissue Analysis Core, McKnight Brain Institute, 5Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; 6DuPont Central Research and Development, Corporate Center for Analytical Science, Wilmington, DE, USABackground: Theranostic nanomaterials composed of fluorescent and photothermal agents can both image and provide a method of disease treatment in clinical oncology. For in vivo use, the near-infrared (NIR) window has been the focus of the majority of studies, because of greater light penetration due to lower absorption and scatter of biological components. Therefore, having both fluorescent and photothermal agents with optical properties in the NIR provides the best chance of improved theranostic capabilities utilizing nanotechnology.Methods: We developed nonplasmonic multi-dye theranostic silica nanoparticles (MDT-NPs), combining NIR fluorescence visualization and photothermal therapy within a single nanoconstruct comprised of molecular components. A modified NIR fluorescent heptamethine cyanine dye was covalently incorporated into a mesoporous silica matrix and a hydrophobic metallo-naphthalocyanine dye with large molar absorptivity was loaded into the pores of these fluorescent particles. The imaging and therapeutic capabilities of these nanoparticles were demonstrated in vivo using a direct tumor injection model.Results: The fluorescent nanoparticles are bright probes (300-fold enhancement in quantum yield versus free dye) that have a large Stokes shift (>110 nm). Incorporation of the naphthalocyanine dye and exposure to NIR laser excitation results in a temperature increase of the surrounding environment of the MDT-NPs. Tumors injected with these NPs are easily visible with NIR imaging and produce significantly elevated levels of tumor necrosis (95%) upon photothermal ablation compared with controls, as evaluated by bioluminescence and histological analysis.Conclusion: MDT-NPs are novel, multifunctional nanomaterials that have optical properties dependent upon the unique incorporation of NIR fluorescent and NIR photothermal dyes within a mesoporous silica platform.Keywords: bioluminescence, in vivo imaging, mesoporous silica nanoparticles, NIR fluorescence, photothermal ablation, theranosti
Ectrodactyly and lethal pulmonary acinar dysplasia associated with homozygous FGFR2 mutations identified by exome sequencing
First published: 11 July 2016Abstract not availableChristopher P. Barnett, Nathalie J. Nataren, Manuela Klingler-Hoffmann, Quenten Schwarz, Chan-Eng Chong, Young K. Lee, Damien L. Bruno, Jill Lipsett, Andrew J. McPhee, Andreas W. Schreiber, Jinghua Feng, Christopher N. Hahn, and Hamish S. Scot
Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis
Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund
Recommended from our members
Medicare Primer
This report provides a general overview of the Medicare program including descriptions of the program's history, eligibility criteria, covered services, provider payment systems, and program administration and financing
JWST Pathfinder Telescope Integration
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
Asymmetric triplex metallohelices with high and selective activity against cancer cells
Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.
At a glanc
- …