7 research outputs found

    Plasma Retinol Concentrations and Dietary Intakes of Mother-Infant Sets in Singleton versus Twin Pregnancy

    Get PDF
    Vitamin A (retinol) is essential for normal fetal development, but the recommendation for maternal dietary intake (Retinol Activity Equivalent, RAE) does not differ for singleton vs. twin pregnancy, despite the limited evaluation of retinol status. Therefore, this study aimed to evaluate plasma retinol concentrations and deficiency status in mother-infant sets from singleton vs. twin pregnancies as well as maternal RAE intake. A total of 21 mother-infant sets were included (14 singleton, 7 twin). The HPLC and LC-MS/HS evaluated the plasma retinol concentration, and data were analyzed using the Mann-Whitney U test. Plasma retinol was significantly lower in twin vs. singleton pregnancies in both maternal (192.2 vs. 312.1 vs. mcg/L, p = 0.002) and umbilical cord (UC) samples (102.5 vs. 154.4 vs. mcg/L, p = 0.002). The prevalence of serum-defined vitamin A deficiency (VAD) \u3c200.6 mcg/L was higher in twins vs. singletons for both maternal (57% vs. 7%, p = 0.031) and UC samples (100% vs. 0%, p \u3c 0.001), despite a similar RAE intake (2178 vs. 1862 mcg/day, p = 0.603). Twin pregnancies demonstrated a higher likelihood of vitamin A deficiency in mothers, with an odds ratio of 17.3 (95% CI: 1.4 to 216.6). This study suggests twin pregnancy may be associated with VAD deficiency. Further research is needed to determine optimal maternal dietary recommendations during twin gestation

    Retinol and Pro-Vitamin A Carotenoid Nutritional Status during Pregnancy Is Associated with Newborn Hearing Screen Results

    Get PDF
    The prenatal period is critical for auditory development; thus, prenatal influences on auditory development may significantly impact long-term hearing ability. While previous studies identified a protective effect of carotenoids on adult hearing, the impact of these nutrients on hearing outcomes in neonates is not well understood. The purpose of this study is to investigate the relationship between maternal and umbilical cord plasma retinol and carotenoid concentrations and abnormal newborn hearing screen (NHS) results. Mother-infant dyads (n = 546) were enrolled at delivery. Plasma samples were analyzed using HPLC and LC-MS/MS. NHS results were obtained from medical records. Statistical analysis utilized Mann-Whitney U tests and logistic regression models, with p ≤ 0.05 considered statistically significant. Abnormal NHS results were observed in 8.5% of infants. Higher median cord retinol (187.4 vs. 162.2 μg/L, p = 0.01), maternal trans-β-carotene (206.1 vs. 149.4 μg/L, p = 0.02), maternal cis-β-carotene (15.9 vs. 11.2 μg/L, p = 0.02), and cord trans-β-carotene (15.5 vs. 8.0 μg/L, p = 0.04) were associated with abnormal NHS. Significant associations between natural log-transformed retinol and β-carotene concentrations and abnormal NHS results remained after adjustment for smoking status, maternal age, and corrected gestational age. Further studies should investigate if congenital metabolic deficiencies, pesticide contamination of carotenoid-rich foods, maternal hypothyroidism, or other variables mediate this relationshi

    A Combined High Salt Plus Fructose Diet Mediates Hypertension

    Get PDF
    The sympathetic nervous system (SNS) is the main control center for the neurogenic regulation of blood pressure and is affected in fructose induced hypertension. The brain is by far the greatest consuming and energy demanding organ in the body which has the ability to metabolize and generate fructose but with consequences. Diets high in salt and fructose enter the body and eventually crosses the blood brain barrier where it exerts its effects on SNS signaling. The aim of this thesis is to determine the connection between fructose and hypertension along with the detrimental effects of fructose within the brain. Here we test the hypothesis that a high salt combined with a high fructose diet contributes to hypertension by increased cerebral spinal fluid (CSF) sodium concentrations which alter key neuronal signaling mechanisms

    Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography

    No full text
    © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na + , K + , Ca 2+ , and Mg 2+ ) and anions; chloride, and acetate (Cl − , − OAc) from physiological samples. Specifically, cations and anions were measured in liquid samples: serum, urine, and cerebrospinal fluid, as well as tissue samples: liver, cortex, hypothalamus, and amygdala. Serum concentrations of Na + , K + , Ca 2+ , Mg 2+ , Cl − , and − OAc (mmol/L): 138.8 ± 4.56, 4.05 ± 0.21, 4.07 ± 0.26, 0.98 ± 0.05, 97.7 ± 3.42, and 0.23 ± 0.04, respectively. Cerebrospinal fluid concentrations of Na + , K + , Ca 2+ , Mg 2+ , Cl − , and − OAc (mmol/L): 145.1 ± 2.81, 2.41 ± 0.26, 2.18 ± 0.38, 1.04 ± 0.11, 120.2 ± 3.75, 0.21 ± 0.05, respectively. Tissue Na + , K + , Ca 2+ , Mg 2+ , Cl − , and − OAc were also measured. Validation of the ion chromatography method was established by comparing chloride concentration between ion chromatography with a known method using an ion selective chloride electrode. These results indicate that ion chromatography is a suitable method for the measurement of cations and anions, including acetate from various physiological samples

    Expression of Proinflammatory Cytokines Is Upregulated in the Hypothalamic Paraventricular Nucleus of Dahl Salt-Sensitive Hypertensive Rats

    No full text
    Accumulating evidence indicates that inflammation is implicated in hypertension. However, the role of brain proinflammatory cytokines (PICs) in salt sensitive hypertension remains to be determined. Thus, the objective of this study was to test the hypothesis that high salt (HS) diet increases PICs expression in the paraventricular nucleus (PVN) and leads to PVN neuronal activation. Eight-week-old male Dahl salt sensitive (Dahl S) rats, and age and sex matched normal Sprague Dawley (SD) rats were divided into two groups and fed with either a HS (4% NaCl) or normal salt (NS, 0.4% NaCl) diet for 5 consecutive weeks. HS diet induced hypertension and significantly increased cerebrospinal fluid (CSF) sodium concentration ([Na+]) in Dahl S rats, but not in normal SD rats. In addition, HS diet intake triggered increases in mRNA levels and immunoreactivities of PVN PICs including TNF-α, IL-6, and IL-1β, as well as Fra1, a chronic marker of neuronal activation, in Dahl S rats, but not in SD rats. Next, we investigated whether this increase in the expression of PVN PICs and Fra1 was induced by increased CSF [Na+]. Adult male SD rats were intracerebroventricular (ICV) infused with 8 μl of either hypertonic salt (4 μmol NaCl), mannitol (8 μmol, as osmolarity control), or isotonic salt (0.9% NaCl as vehicle control). Three hours following the ICV infusion, rats were euthanized and their PVN PICs expression was measured. The results showed that central administration of hypertonic saline in SD rats significantly increased the expression of PICs including TNF-α, IL-6, and IL-1β, as well as neuronal activation marker Fra1, compared to isotonic NaCl controls and osmolarity controls. Finally, we tested whether the increase in PICs expression occurred in neurons. Incubation of hypothalamic neurons with 10 mM NaCl in a culture medium for 6 h elicited significant increases in TNF-α, IL-6, and Fra1 mRNA levels. These observations, coupled with the important role of PICs in modulating neuronal activity and stimulating vasopressin release, suggest that HS intake induces an inflammatory state in the PVN, which, may in turn, augments sympathetic nerve activity and vasopressin secretion, contributing to the development of salt sensitive hypertension

    Retinol and Pro-Vitamin A Carotenoid Nutritional Status during Pregnancy Is Associated with Newborn Hearing Screen Results

    No full text
    The prenatal period is critical for auditory development; thus, prenatal influences on auditory development may significantly impact long-term hearing ability. While previous studies identified a protective effect of carotenoids on adult hearing, the impact of these nutrients on hearing outcomes in neonates is not well understood. The purpose of this study is to investigate the relationship between maternal and umbilical cord plasma retinol and carotenoid concentrations and abnormal newborn hearing screen (NHS) results. Mother–infant dyads (n = 546) were enrolled at delivery. Plasma samples were analyzed using HPLC and LC–MS/MS. NHS results were obtained from medical records. Statistical analysis utilized Mann–Whitney U tests and logistic regression models, with p ≤ 0.05 considered statistically significant. Abnormal NHS results were observed in 8.5% of infants. Higher median cord retinol (187.4 vs. 162.2 μg/L, p = 0.01), maternal trans-β-carotene (206.1 vs. 149.4 μg/L, p = 0.02), maternal cis-β-carotene (15.9 vs. 11.2 μg/L, p = 0.02), and cord trans-β-carotene (15.5 vs. 8.0 μg/L, p = 0.04) were associated with abnormal NHS. Significant associations between natural log-transformed retinol and β-carotene concentrations and abnormal NHS results remained after adjustment for smoking status, maternal age, and corrected gestational age. Further studies should investigate if congenital metabolic deficiencies, pesticide contamination of carotenoid-rich foods, maternal hypothyroidism, or other variables mediate this relationship
    corecore