55 research outputs found

    Long-Term Survival, Vascular Occlusive Events and Efficacy Biomarkers of First-Line Treatment of CML:A Meta-Analysis

    Get PDF
    Large randomized clinical trials and prior meta-analyses indicate that second-generation BCR-ABL tyrosine kinase inhibitors (TKIs) improve surrogate biomarkers in patients with chronic myeloid leukemia (CML) without providing survival benefits. The objective is to evaluate the long-term efficacy and the occurrence of vascular occlusion with second-generation BCR-ABL TKIs compared with imatinib in patients with CML. Three scientific databases, a clinical registry and abstracts from congress were searched to identify all randomized controlled trials that compared a second-generation BCR-ABL TKI to imatinib in patients with CML. Outcomes extracted were overall survival, major molecular response and complete cytogenetic response, arterial occlusive events and venous thromboembolism. These data were synthesized by odds ratios using a fixed-effect model. This meta-analysis included 4659 participants from 14 trials. Second-generation BCR-ABL TKIs did not improve overall survival compared with imatinib, even at longer follow-up (OR, 1.17 (95% CI, 0.91-1.52)). They improved surrogate biomarkers at 12 and 24 months but increased the risk of arterial occlusion (OR, 2.81 (95% CI, 2.11-3.73)). The long-term benefits of second-generation TKIs are restricted to surrogate outcomes and do not translate into prolonged survival compared to imatinib. Given the long-term use, frontline therapy should be chosen carefully, with special attention to the patients' quality of life and cardiovascular risks

    The Risk of Arterial Thrombosis in Patients With Chronic Myeloid Leukemia Treated With Second and Third Generation BCR-ABL Tyrosine Kinase Inhibitors May Be Explained by Their Impact on Endothelial Cells:An In-Vitro Study

    Get PDF
    BCR-ABL tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia, inducing deep molecular responses, largely improving patient survival and rendering treatment-free remission possible. However, three of the five BCR-ABL TKIs, dasatinib, nilotinib, and ponatinib, increase the risk of developing arterial thrombosis. Prior investigations reported that nilotinib and ponatinib affect the endothelium, but the mechanisms by which they exert their toxic effects are still unclear. The impact of dasatinib and bosutinib on endothelial cells has been poorly investigated. Here, we aimed to provide an in vitro homogenous evaluation of the effects of BCR-ABL TKIs on the endothelium, with a special focus on the type of cell death to elucidate the mechanisms responsible for the potential cytotoxic effects of BCR-ABL TKIs nilotinib and ponatinib on endothelial cells. We tested the five BCR-ABL TKIs at three concentrations on human umbilical venous endothelial cells (HUVECs). This study highlights the endothelial toxicity of ponatinib and provides insights about the mechanisms by which it affects endothelial cell viability. Ponatinib induced apoptosis and necrosis of HUVECs after 72 h. Dasatinib affected endothelial cells in vitro by inhibiting their proliferation and decreased wound closure as soon as 24 h of treatment and even at infra-therapeutic dose (0.005 ”M). Comparatively, imatinib, nilotinib, and bosutinib had little impact on endothelial cells at therapeutic concentrations. They did not induce apoptosis nor necrosis, even after 72 h of treatment but they inhibited HUVEC proliferation. Overall, this study reports various effects of BCR-ABL TKIs on endothelial cells and suggests that ponatinib and dasatinib induce arterial thrombosis through endothelial dysfunction.</p

    Clinical performance of the Panbio assay for the detection of SARS‐CoV‐2 IgM and IgG in COVID‐19 patients

    Get PDF
    Following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, numerous serological tests have been developed, including rapid diagnostic tests. This study aims at assessing the clinical performance of the Panbio immunoglobulin G (IgG)/IgM coronavirus disease 2019 (COVID-19) test (Abbott), a rapid lateral flow assay for the qualitative detection of IgG and IgM against SARS-CoV-2. One hundred and thirty-eight samples from 95 COVID-19 patients with a positive SARS-CoV-2 reverse-transcriptase polymerase chain reaction were analyzed to assess the clinical sensitivity. Seventy-six pre-COVID-19 samples were used to evaluate the clinical specificity. Two independent and blinded raters determined visually the presence or absence of the IgG, IgM, and control lines for each test after 10 and 20 min. The sensitivity obtained from collected samples more than 14 days after the onset of symptoms was 95.2% for IgG. IgM was less frequently detected (highest sensitivity of 20.5%). The specificities obtained were 98.7% and 100% for IgG and IgM, respectively. In addition, the sensitivity of the assay was better when the reading was performed at 20 min than at 10 min, whereas the specificity was unchanged. The Panbio COVID-19 IgG/IgM rapid test detects IgG with high sensitivity 14 days since symptom onset but presents a low sensitivity for IgM. The specificity was excellent for both IgG and IgM.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    BCR-ABL Tyrosine Kinase Inhibitors:Which Mechanism(s) May Explain the Risk of Thrombosis?

    Get PDF
    AbstractImatinib, the first-in-class BCR-ABL tyrosine kinase inhibitor (TKI), had been a revolution for the treatment of chronic myeloid leukemia (CML) and had greatly enhanced patient survival. Second- (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKIs have been developed to be effective against BCR-ABL mutations making imatinib less effective. However, these treatments have been associated with arterial occlusive events. This review gathers clinical data and experiments about the pathophysiology of these arterial occlusive events with BCR-ABL TKIs. Imatinib is associated with very low rates of thrombosis, suggesting a potentially protecting cardiovascular effect of this treatment in patients with BCR-ABL CML. This protective effect might be mediated by decreased platelet secretion and activation, decreased leukocyte recruitment, and anti-inflammatory or antifibrotic effects. Clinical data have guided mechanistic studies toward alteration of platelet functions and atherosclerosis development, which might be secondary to metabolism impairment. Dasatinib, nilotinib, and ponatinib affect endothelial cells and might induce atherogenesis through increased vascular permeability. Nilotinib also impairs platelet functions and induces hyperglycemia and dyslipidemia that might contribute to atherosclerosis development. Description of the pathophysiology of arterial thrombotic events is necessary to implement risk minimization strategies.</jats:p
    • 

    corecore