1 research outputs found
Cluster size dependence of high-order harmonic generation
We investigate high-order harmonic generation (HHG) from noble gas clusters
in a supersonic gas jet. To identify the contribution of harmonic generation
from clusters versus that from gas monomers, we measure the high-order harmonic
output over a broad range of the total atomic number density in the jet (from
3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303
K and 363 K). For the firrst time in the evaluation of the harmonic yield in
such measurements, the variation of the liquid mass fraction, g, versus
pressure and temperature is taken into consideration, which we determine,
reliably and consistently, to be below 20% within our range of experimental
parameters. By comparing the measured harmonic yield from a thin jet with the
calculated corresponding yield from monomers alone, we find an increased
emission of the harmonics when the average cluster size is less than 3000.
Using g, under the assumption that the emission from monomers and clusters add
up coherently, we calculate the ratio of the average single-atom response of an
atom within a cluster to that of a monomer and find an enhancement of around 10
for very small average cluster size (~200). We do not find any dependence of
the cut-off frequency on the composition of the cluster jet. This implies that
HHG in clusters is based on electrons that return to their parent ions and not
to neighbouring ions in the cluster. To fully employ the enhanced average
single-atom response found for small average cluster sizes (~200), the nozzle
producing the cluster jet must provide a large liquid mass fraction at these
small cluster sizes for increasing the harmonic yield. Moreover, cluster jets
may allow for quasi-phase matching, as the higher mass of clusters allows for a
higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure