482 research outputs found

    Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations

    Full text link
    We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the 29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw Valley, California, 10-16 Jul 201

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2≈Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment κv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    Peripherical processes 2 →\to 3 and 2 →\to 4 in QED and QCD in p(pˉ)pp(\bar p)p high energy collisions

    Full text link
    Differential cross section of processes with high energy p(pˉ)pp(\bar p)p collisions in frames of QED: creation of scalar, pseudoscalar and lepton pair - are considered in Weizs\"acker - Williams approximation. In frames of QCD processes with conversion of initial proton (antiproton) to fermionic jets accompanied with one gluon jet as well as the state of two gluons and quark-antiquark pair (with out rapidity gap) are considered in frames of effective Reggion action of theory of Lipatov. Process of creation of a Higgs boson accompanied with two fermionic jets is considered. The azimuthal correlation in process of two gluon jet separated by rapidity gap is investigated. Effects of gluon reggeization are taken into account. Some distributions are illustrated by numerical calculations.Comment: 17 pages, 6 figure

    The size of electron-hole pairs in pi conjugated systems

    Get PDF
    We have performed momentum dependent electron energy-loss studies of the electronic excitations in sexithiophene and compared the results to those from parent oligomers. Our experiment probes the dynamic structure factor S(q,omega)and we show that the momentum dependent intensity variation of the excitations observed can be used to extract the size of the electron-hole pair created in the excitation process. The extension of the electron-hole pairs along the molecules is comparable to the length of the molecules and thus maybe only limited by structural constraints. Consequently, the primary intramolecular electron-hole pairs are relatively weakly bound. We find no evidence for the formation of excitations localized on single thiophene units.Comment: RevTex, 3 figures, to appear in Physical Review Letter

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur

    Vertex functions for d-wave mesons in the light-front approach

    Full text link
    While the light-front quark model (LFQM) is employed to calculate hadronic transition matrix elements, the vertex functions must be pre-determined. In this work we derive the vertex functions for all d-wave states in this model. Especially, since both of 3D1^3D_1 and 3S1^3S_1 are 1−−1^{--} mesons, the Lorentz structures of their vertex functions are the same. Thus when one needs to study the processes where 3D1^3D_1 is involved, all the corresponding formulas for 3S1^3S_1 states can be directly applied, only the coefficient of the vertex function should be replaced by that for 3D1^3D_1. The results would be useful for studying the newly observed resonances which are supposed to be d-wave mesons and furthermore the possible 2S-1D mixing in ψ′\psi' with the LFQM.Comment: 12 pages, 2 figures, some typos corrected and more discussions added. Accepted by EPJ

    Quark Soup al dente: Applied Superstring Theory

    Full text link
    We discuss the application of the AdS/CFT correspondence to possibly gain new physical insights for the strongly coupled quark-gluon plasma. This article provides an informal summary of a talk given by RCM at the 18th International Conference on General Relativity and Gravitation in July 2007.Comment: This article provides an informal summary of a talk given by RCM at the 18th International Conference on General Relativity and Gravitation in July 200

    Heavy Flavour Production at Tevatron and Parton Shower Effects

    Get PDF
    We present hadron-level predictions from the Monte Carlo generator Cascade and numerical calculations of charm and beauty production at the Fermilab Tevatron within the framework of the kTk_T-factorization QCD approach. Our consideration is based on the CCFM-evolved unintegrated gluon densities in a proton. The performed analysis covers the total and differential cross sections of open charm and beauty quarks, BB and DD mesons (or rather muons from their semileptonic decays) and the total and differential cross sections of bbˉb \bar b di-jet hadroproduction. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. Our predictions are compared with the recent experimental data taken by the D0 and CDF collaborations. Special attention is put on the specific angular correlations between the final-state particles. We demonstrate that the final state parton shower plays a crucial role in the description of such observables. The decorrelated part of angular separations can be fully described, if the process gg∗→gggg^*\rightarrow gg is included.Comment: Fig 8,9 10 replaced, small corrections in text A discussion of the delta phi results is adde
    • …
    corecore