8 research outputs found

    A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines

    Get PDF
    Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model

    Low response in eliciting neuraminidase inhibition activity of sera among recipients of a split, monovalent pandemic influenza vaccine during the 2009 pandemic.

    No full text
    Antibodies against influenza virus neuraminidase (NA) protein prevent releasing of the virus from host cells and spreading of infection foci and are considered the 'second line of defence' against influenza. Haemagglutinin inhibition antibody-low responders (HI-LRs) are present among influenza split vaccine recipients. The NA inhibition (NAI) antibody response in vaccinees is worth exploring, especially those in the HI-LRs population. We collected pre- and post-vaccination sera from 61 recipients of an inactivated, monovalent, split vaccine against A/H1N1pdm09 and acute and convalescent sera from 49 unvaccinated patients naturally infected with the A/H1N1pdm09 virus during the 2009 influenza pandemic. All samples were subjected to haemagglutinin inhibition (HI), NAI and neutralisation assays. Most paired sera from naturally infected patients exhibited marked elevation in the NAI activity, and seroconversion rates (SCR) among HI-LRs and HI-responders (HI-Rs) were 60% and 87%, respectively; however, those from vaccinees displayed low increase in the NAI activity, and the SCR among HI-LRs and HI-Rs were 0% and 12%, respectively. In both HI-LRs and HI-Rs, vaccination with the inactivated, monovalent, split vaccine failed to elicit the NAI activity efficiently in the sera of the naive population, compared with the natural infection. Hence, the improvement of influenza vaccines is warranted to elicit not only HI but also NAI antibodies

    Rice Dwarf Viruses with Dysfunctional Genomes Generated in Plants Are Filtered Out in Vector Insects: Implications for the Origin of the Virus ▿ †

    No full text
    Rice dwarf virus (RDV), with 12 double-stranded RNA (dsRNA) genome segments (S1 to S12), replicates in and is transmitted by vector insects. The RDV-plant host-vector insect system allows us to examine the evolution, adaptation, and population genetics of a plant virus. We compared the effects of long-term maintenance of RDV on population structures in its two hosts. The maintenance of RDV in rice plants for several years resulted in gradual accumulation of nonsense mutations in S2 and S10, absence of expression of the encoded proteins, and complete loss of transmissibility. RDV maintained in cultured insect cells for 6 years retained an intact protein-encoding genome. Thus, the structural P2 protein encoded by S2 and the nonstructural Pns10 protein encoded by S10 of RDV are subject to different selective pressures in the two hosts, and mutations accumulating in the host plant are detrimental in vector insects. However, one round of propagation in insect cells or individuals purged the populations of RDV that had accumulated deleterious mutations in host plants, with exclusive survival of fully competent RDV. Our results suggest that during the course of evolution, an ancestral form of RDV, of insect virus origin, might have acquired the ability to replicate in a host plant, given its reproducible mutations in the host plant that abolish vector transmissibility and viability in nature

    Characterization of Influenza A(H1N1)pdm09 Viruses Isolated in the 2018–2019 and 2019–2020 Influenza Seasons in Japan

    No full text
    The influenza A(H1N1)pdm09 virus that emerged in 2009 causes seasonal epidemic worldwide. The virus acquired several amino acid substitutions that were responsible for antigenic drift until the 2018–2019 influenza season. Viruses possessing mutations in the NA and PA proteins that cause reduced susceptibility to NA inhibitors and baloxavir marboxil, respectively, have been detected after antiviral treatment, albeit infrequently. Here, we analyzed HA, NA, and PA sequences derived from A(H1N1)pdm09 viruses that were isolated during the 2018–2019 and 2019–2020 influenza seasons in Japan. We found that A(H1N1)pdm09 viruses possessing the D187A and Q189E substitutions in HA emerged and dominated during the 2019–2020 season; these substitutions in the antigenic site Sb, a high potency neutralizing antibody-eliciting site for humans, changed the antigenicity of A(H1N1)pdm09 viruses. Furthermore, we found that isolates possessing the N156K substitution, which was predicted to affect the antigenicity of A(H1N1)pdm09 virus at the laboratory level, were detected at a frequency of 1.0% in the 2018–2019 season but 10.1% in the 2019–2020 season. These findings indicate that two kinds of antigenically drifted viruses—N156K and D187A/Q189E viruses—co-circulated during the 2019–2020 influenza season in Japan

    Japanese University Joint Dense Seismic Observation on and around Fuji Volcano (September 2002-April 2005)

    No full text
    A joint dense seismic observation experiment was conducted during the period of September 2002~April 2005 in cooperation of researchers of national universities under the national project for prediction of volcanic eruption. Major objectives include seismic exploration of the subsurface structure of Fuji volcano and surrounding area as well as array observation of deep low frequency earthquakes, the activity of which increased in 2000-2001 beneath the volcano. We installed 28 seismographs temporarily on and around Fuji volcano and the data was transmitted to the Volcano Research Center (VRC), Earthquake Research Institute by satellite, radio and cable telemetry systems. We further collected seismic data of permanent stations around Fuji volcano operated by related research institutions. All the data was collected and picked at VRC. In this initial report we describe the brief outline of the joint experiment, and summarize the preliminary results of analyses on the seismic velocity structure of Fuji volcano and wave characteristics of a low frequency earthquake, which occurred on 11 September 2003
    corecore