38 research outputs found
Energy-Efficient and Reliable Computing in Dark Silicon Era
Dark silicon denotes the phenomenon that, due to thermal and power constraints, the fraction of transistors that can operate at full frequency is decreasing in each technology generation. Moore’s law and Dennard scaling had been backed and coupled appropriately for five decades to bring commensurate exponential performance via single core and later muti-core design. However, recalculating Dennard scaling for recent small technology sizes shows that current ongoing multi-core growth is demanding exponential thermal design power to achieve linear performance increase. This process hits a power wall where raises the amount of dark or dim silicon on future multi/many-core chips more and more. Furthermore, from another perspective, by increasing the number of transistors on the area of a single chip and susceptibility to internal defects alongside aging phenomena, which also is exacerbated by high chip thermal density, monitoring and managing the chip reliability before and after its activation is becoming a necessity. The proposed approaches and experimental investigations in this thesis focus on two main tracks: 1) power awareness and 2) reliability awareness in dark silicon era, where later these two tracks will combine together. In the first track, the main goal is to increase the level of returns in terms of main important features in chip design, such as performance and throughput, while maximum power limit is honored. In fact, we show that by managing the power while having dark silicon, all the traditional benefits that could be achieved by proceeding in Moore’s law can be also achieved in the dark silicon era, however, with a lower amount. Via the track of reliability awareness in dark silicon era, we show that dark silicon can be considered as an opportunity to be exploited for different instances of benefits, namely life-time increase and online testing. We discuss how dark silicon can be exploited to guarantee the system lifetime to be above a certain target value and, furthermore, how dark silicon can be exploited to apply low cost non-intrusive online testing on the cores. After the demonstration of power and reliability awareness while having dark silicon, two approaches will be discussed as the case study where the power and reliability awareness are combined together. The first approach demonstrates how chip reliability can be used as a supplementary metric for power-reliability management. While the second approach provides a trade-off between workload performance and system reliability by simultaneously honoring the given power budget and target reliability
Heterogeneous parallelization for object detection and tracking in UAVs.
Recent technical advancements in both fields of unmanned aerial vehicles (UAV) control and artificial intelligence (AI) have made a certain realm of applications possible. However, one of the main problems in integration of these two areas is the bottle-neck of computing AI applications on UAV's resource limited platform. One of the main solution for this problem is that AI and control software from one side and computing hardware mounted on UAV from the other side be adopted together based on the main constraints of the resource limited computing platform on UAV. Basically, the target constraints of such adaptation are performance, energy efficiency, and accuracy. In this paper, we propose a strategy to integrate and adopt the commonly used object detection and tracking algorithm and UAV control software to be executed on a heterogeneous resource limited computing units on a UAV. For object detection, a convolutional neural network (CNN) algorithm is used. For object tracking, a novel algorithm is proposed that can execute along with object tracking via sequential stream data. For UAV control, a Gain-Scheduled PID controller is designed that steers the UAV by continuously manipulation of the actuators based on the stream data from the tracking unit and dynamics of the UAV. All the algorithms are adopted to be executed on a heterogeneous platform including NVIDIA Jetson TX2 embedded computer and an ARM Cortex M4. The observation from real-time operation of the platform shows that using the proposed platform reduces the power consumption by 53.69% in contrast with other existing methods while having marginal penalty for object detection and tracking parts
Comparison of Linear and Nonlinear Methods for Distributed Control of a Hierarchical Formation of UAVs
A key problem in cooperative robotics is the maintenance of a geometric configuration during movement. As a solution for this, a multi-layered and distributed control system is proposed for the swarm of drones in the formation of hierarchical levels based on the leader & x2013;follower approach. The complexity of developing a large system can be reduced in this way. To ensure the tracking performance and response time of the ensemble system, nonlinear and linear control designs are presented; (a) Sliding Mode Control connected with Proportional-Derivative controller and (b) Linear Quadratic Regular with integral action respectively. The safe travel distance strategy for collision avoidance is introduced and integrated into the control designs for maintaining the hierarchical states in the formation. Both designs provide a rapid adoption with respect to their settling time without introducing oscillations for the dynamic flight movement of vehicles in the cases of (a) nominal, (b) plant-model mismatch, and (c) external disturbance inputs. Also, the nominal settling time of the swarm is improved by 44 & x0025; on average when using the nonlinear method as compared to the linear method. Furthermore, the proposed methods are fully distributed so that each UAV autonomously performs the feedback laws in order to achieve better modularity and scalability
Remote Run-Time Failure Detection and Recovery Control For Quadcopters
We propose an adaptive run-time failure recovery control system for quadcopter drones, based on remote real-time processing of measurement data streams. Particularly, the measured RPM values of the quadcopter motors are transmitted to a remote machine which hosts failure detection algorithms and performs recovery procedure. The proposed control system consists of three distinct parts: (1) A set of computationally simple PID controllers locally onboard the drone, (2) a set of computationally more demanding remotely hosted algorithms for real-time drone state detection, and (3) a digital twin co-execution software platform — the ModelConductor-eXtended — for two-way signal data exchange between the former two. The local on-board control system is responsible for maneuvering the drone in all conditions: path tracking under normal operation and safe landing in a failure state. The remote control system, on the other hand, is responsible for detecting the state of the drone and communicating the corresponding control commands and controller parameters to the drone in real time. The proposed control system concept is demonstrated via simulations in which a drone is represented by the widely studied Quad-Sim six degrees-of-freedom Simulink model. Results show that the trained failure detection binary classifier achieves a high level of performance with F1-score of 96.03%. Additionally, time analysis shows that the proposed remote control system, with average execution time of 0.49 milliseconds and total latency of 6.92 milliseconds in two-way data communication link, meets the real-time constraints of the problem. The potential practical applications for the presented approach are in drone operation in complex environments such as factories (indoor) or forests (outdoor). </p
Swarms of Unmanned Aerial Vehicles – A Survey
The purpose of this study is to focus on the analysis
of the core characteristics of swarms of drones or Unmanned Aerial Vehicles and
to present them in a way that facilitates analysis of public awareness on such
swarms. Furthermore, the functionality, problems, and importance of drones are
highlighted. Lastly, the experimental survey from a bunch of academic population demonstrates that the swarms of drones
are fundamental future agendas and will be adapted
by the time.</p
Swarm formation morphing for congestion-aware collision avoidance
The focus of this work is to present a novel methodology for optimal distribution of a swarm formation on either side of an obstacle, when evading the obstacle, to avoid overpopulation on the sides to reduce the agents' waiting delays, resulting in a reduced overall mission time and lower energy consumption. To handle this, the problem is divided into two main parts: 1) the disturbance phase: how to morph the formation optimally to avoid the obstacle in the least possible time in the situation at hand, and 2) the convergence phase: how to optimally resume the intended formation shape once the threat of potential collision has been eliminated. For the first problem, we develop a methodology which tests different formation morphing combinations and finds the optimal one, by utilizing trajectory, velocity, and coordinate information, to bypass the obstacle. For the second problem, we utilize thin-plate splines (TPS) inspired temperature function minimization method to bring the agents back from the distorted formation into the desired formation in an optimal manner, after collision avoidance has been successfully performed. Experimental results show that, in the considered test scenario, the proposed approach results in substantial energy savings as compared with the traditional methods
Heterogeneous Parallelization for Object Detection and Tracking in UAVs
Recent technical advancements in both fields of unmanned aerial vehicles (UAV) control and artificial intelligence (AI) have made a certain realm of applications possible. However, one of the main problems in integration of these two areas is the bottle-neck of computing AI applications on UAV & x2019;s resource limited platform. One of the main solution for this problem is that AI and control software from one side and computing hardware mounted on UAV from the other side be adopted together based on the main constraints of the resource limited computing platform on UAV. Basically, the target constraints of such adaptation are performance, energy efficiency, and accuracy. In this paper, we propose a strategy to integrate and adopt the commonly used object detection and tracking algorithm and UAV control software to be executed on a heterogeneous resource limited computing units on a UAV. For object detection, a convolutional neural network (CNN) algorithm is used. For object tracking, a novel algorithm is proposed that can execute along with object tracking via sequential stream data. For UAV control, a Gain-Scheduled PID controller is designed that steers the UAV by continuously manipulation of the actuators based on the stream data from the tracking unit and dynamics of the UAV. All the algorithms are adopted to be executed on a heterogeneous platform including NVIDIA Jetson TX2 embedded computer and an ARM Cortex M4. The observation from real-time operation of the platform shows that using the proposed platform reduces the power consumption by 53.69 & x0025; in contrast with other existing methods while having marginal penalty for object detection and tracking parts