1,793 research outputs found
Evolution of suprathermal seed particle and solar energetic particle abundances
We report on a survey of the composition of solar-wind suprathermal tails and solar energetic particles (SEPs) including data from 1998 to 2010, with a focus on 2007 to 2010. The start of solar cycle 24 included several SEP events that were unusually He-poor. We conclude that these He-poor events are more likely related to Q/M-dependent spectral variations than to seed-particle composition changes. We also find that the quiet-time suprathermal Fe/O ratio during the 2008-2009 solar-minimum was dramatically lower (Fe/O †0.01) than earlier due in part to very low solar activity, but also suggesting contributions from an oxygen-rich source of suprathermal ions of unknown origin
Solar Energetic Particle Spectral Breaks
The five large solar particle events during OctoberâNovember 2003 presented an opportunity to test shock acceleration models with in-situ observations. We use solar particle spectra of H to Fe ions, measured by instruments on ACE, SAMPEX, and GOES-11, to investigate the Q/M-dependence of spectral breaks in the 28 October 2003 event. We find that the break energies scale as (Q/M)^b with b â 1.56 to 1.75, somewhat less than predicted. We also conclude that SEP spectra >100 MeV/nucleon are best fit by a double power-law shape. ©2005 American Institute of Physic
Radiation risks from large solar energetic particle events
Solar energetic particles (SEPs) constitute a radiation hazard to both humans and hardware in space. Over the past few years there have been significant advances in our knowledge of the composition and energy spectra of SEP events, leading to new insights into the conditions that contribute to the largest events. This paper summarizes the energy spectra and frequency of large SEP events, and discusses the interplanetary conditions that affect the intensity of the largest events
A new approach to generating research-quality data through citizen science: The USA National Phenology Monitoring System
Phenology is one of the most sensitive biological responses to climate change, and recent changes in phenology have the potential to shake up ecosystems. In some cases, it appears they already are. Thus, for ecological reasons it is critical that we improve our understanding of species’ phenologies and how these phenologies are responding to recent, rapid climate change. Phenological events like flowering and bird migrations are easy to observe, culturally important, and, at a fundamental level, naturally inspire human curiosity— thus providing an excellent opportunity to engage citizen scientists. The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change.

Traditional phenological observation protocols identify specific dates at which individual phenological events are observed. The scientific usefulness of long-term phenological observations could be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. “Do you see open flowers?”), which makes it very appropriate for a citizen science audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change. This new protocol is an important step forward, and its widespread adoption will increase the scientific value of data collected by citizen scientists.

Observations of the longitudinal spread of solar energetic particle events in solar cycle 24
With the twin STEREO spacecraft, significantly separated from L1-based satellites such as ACE, simultaneous multi-point measurements of solar energetic particle (SEP) events can be made for H-Fe ions from a few hundred keV/nuc to over 100 MeV/nuc and for electrons from tens to hundreds of keV. These observations allow studies of the longitudinal characteristics of SEP events to advance beyond statistical analysis of single point measurements. Although there have been few large SEP events thus far in cycle 24, there have been a number of smaller events that have been detected by more than one spacecraft. The composition of these SEP events, as indicated by the H/He and Fe/O abundance ratios, shows a dependence on longitudinal distance from the solar source in some events, at times with ratios varying by an order of magnitude. However, these variations are not organized by either the speed or width of the associated coronal mass ejections
How efficient are coronal mass ejections at accelerating solar energetic particles?
The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs
Localization of Eigenfunctions in the Stadium Billiard
We present a systematic survey of scarring and symmetry effects in the
stadium billiard. The localization of individual eigenfunctions in Husimi phase
space is studied first, and it is demonstrated that on average there is more
localization than can be accounted for on the basis of random-matrix theory,
even after removal of bouncing-ball states and visible scars. A major point of
the paper is that symmetry considerations, including parity and time-reversal
symmetries, enter to influence the total amount of localization. The properties
of the local density of states spectrum are also investigated, as a function of
phase space location. Aside from the bouncing-ball region of phase space,
excess localization of the spectrum is found on short periodic orbits and along
certain symmetry-related lines; the origin of all these sources of localization
is discussed quantitatively and comparison is made with analytical predictions.
Scarring is observed to be present in all the energy ranges considered. In
light of these results the excess localization in individual eigenstates is
interpreted as being primarily due to symmetry effects; another source of
excess localization, scarring by multiple unstable periodic orbits, is smaller
by a factor of .Comment: 31 pages, including 10 figure
Observations of Solar Energetic Particles from ^3He-rich Events over a Wide Range of Heliographic Longitude
A prevailing model for the origin of ^3He-rich solar energetic particle (SEP) events attributes particle acceleration to processes associated with the reconnection between closed magnetic field lines in an active region and neighboring open field lines. The open field from the small reconnection volume then provides a path along which accelerated particles escape into a relatively narrow range of angles in the heliosphere. The narrow width (standard deviation 60°. We present the observations of the ^3He-rich event of 2010 February 7, which was detected at all three spacecraft when they spanned 136° in heliographic longitude. Measured fluences of ^3He in this event were found to have a strong dependence on longitude which is well fit by a Gaussian with standard deviation ~48° centered at the longitude that is connected to the source region by a nominal Parker spiral magnetic field. We discuss several mechanisms for distributing flare-accelerated particles over a wide range of heliographic longitudes including interplanetary diffusion perpendicular to the magnetic field, spreading of a compact cluster of open field lines between the active region and the source surface where the field becomes radial and opens out into the heliosphere, and distortion of the interplanetary field by a preceding coronal mass ejection. Statistical studies of additional ^3He-rich events detected at multiple spacecraft will be needed to establish the relative importance of the various mechanisms
Influence of diffraction on the spectrum and wavefunctions of an open system
In this paper, we demonstrate the existence and significance of diffractive
orbits in an open microwave billiard, both experimentally and theoretically.
Orbits that diffract off of a sharp edge of the system are found to have a
strong influence on the transmission spectrum of the system, especially in the
regime where there are no stable classical orbits. On resonance, the
wavefunctions are influenced by both classical and diffractive orbits. Off
resonance, the wavefunctions are determined by the constructive interference of
multiple transient, nonperiodic orbits. Experimental, numerical, and
semiclassical results are presented.Comment: 27 pages, 29 figures, and 3 tables. Submitted to Physical Review E. A
copy with higher resolution figures is available at
http://monsoon.harvard.edu/~hersch/papers.htm
Jets Produced in Ï^-, Ï^+, and Proton Interactions at 200 GeV on Hydrogen and Aluminum Targets
This paper presents results from an experiment on the production of jets (groups of particles) with high p_â„ produced in 200-GeV/c interactions. Results are presented on the comparison of jet cross sections on aluminum and hydrogen targets. The jet fragmentation distributions are also examined. Both the cross section and the jet structure are found to depend strongly on the beam and target types
- âŠ