2,490 research outputs found
Relaxation of Surface Profiles by Evaporation Dynamics
We present simulations of the relaxation towards equilibrium of one
dimensional steps and sinusoidal grooves imprinted on a surface below its
roughening transition. We use a generalization of the hypercube stacking model
of Forrest and Tang, that allows for temperature dependent
next-nearest-neighbor interactions. For the step geometry the results at T=0
agree well with the t^(1/4) prediction of continuum theory for the spreading of
the step. In the case of periodic profiles we modify the mobility for the tips
of the profile and find the approximate solution of the resulting free boundary
problem to be in reasonable agreement with the T=0 simulations.Comment: 6 pages, Revtex, 5 Postscript figures, to appear in PRB 15, October
199
Recommended from our members
Photoplethysmographic sensors for perfusion measurements in spinal cord tissue
Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented
In-service Initial Teacher Education in the Learning and Skills Sector in England: Integrating Course and Workplace Learning
The aim of the paper is to advance understanding of in-service learning and skills sector trainee teachers’ learning and propose ways of improving their learning. A conceptual framework is developed by extending Billett’s (International Journal of Educational Research 47:232–240, 2008) conceptualisation of workplace learning, as a relationally interdependent process between the opportunities workplaces afford for activities and interactions and how individuals engage with these, to a third base of participation, the affordances of the initial teacher education course. Hager and Hodkinson’s (British Educational Research Journal 35:619–638, 2009) metaphor of ‘learning as becoming’ is used to conceptualise the ways trainees reconstruct learning in a continuous transactional process of boundary crossing between course and workplace. The findings of six longitudinal case studies of trainees’ development, and evidence from other studies, illustrate the complex interrelationships between LSS workplace affordances, course affordances and trainee characteristics and the ways in which trainees reconstruct learning in each setting. The experience of teaching and interacting with learners, interactions with colleagues, and access to workplace resources and training are important workplace affordances for learning. However, some trainees have limited access to these affordances. Teaching observations, course activities and experiences as a learner are significant course affordances. Trainees’ beliefs, prior experiences and dispositions vary and significantly influence their engagement with course and workplace affordances. It is proposed that better integration of course and workplace learning through guided participation in an intentional workplace curriculum and attention to the ways trainees choose to engage with this, together with the use of practical theorising has the potential to improve trainee learning
Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes
Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography
Upper mantle seismic anisotropy at a strike-slip boundary: South Island, New Zealand
New shear wave splitting measurements made from stations onshore and offshore the South Island of New Zealand show a zone of anisotropy 100–200 km wide. Measurements in central South Island and up to approximately 100 km offshore from the west coast yield orientations of the fast quasi-shear wave nearly parallel to relative plate motion, with increased obliquity to this orientation observed farther from shore. On the eastern side of the island, fast orientations rotate counterclockwise to become nearly perpendicular to the orientation of relative plate motion approximately 200 km off the east coast. Uniform delay times between the fast and slow quasi-shear waves of nearly 2.0 s onshore continue to stations approximately 100 km off the west coast, after which they decrease to ~1 s at 200 km. Stations more than ~300 km from the west coast show little to no splitting. East coast stations have delay times around 1 s. Simple strain fields calculated from a thin viscous sheet model (representing distributed lithospheric deformation) with strain rates decreasing exponentially to both the northwest and southeast with e-folding dimensions of 25–35 km (approximately 75% of the deformation within a zone 100–140 km wide) match orientations and amounts of observed splitting. A model of deformation localized in the lithosphere and then spreading out in the asthenosphere also yields predictions consistent with observed splitting if, at depths of 100–130 km below the lithosphere, typical grain sizes are ~ 6–7 mm.New Zealand. Ministry of Research, Science, and TechnologyNational Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409564)National Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409609)National Science Foundation (U.S.). Continental Dynamics Program (Grant EAR-0409835
Novel continuum modeling of crystal surface evolution
We propose a novel approach to continuum modeling of the dynamics of crystal
surfaces. Our model follows the evolution of an ensemble of step
configurations, which are consistent with the macroscopic surface profile.
Contrary to the usual approach where the continuum limit is achieved when
typical surface features consist of many steps, our continuum limit is
approached when the number of step configurations of the ensemble is very
large. The model can handle singular surface structures such as corners and
facets. It has a clear computational advantage over discrete models.Comment: 4 pages, 3 postscript figure
Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry
Ramsey's method of separated oscillatory fields is applied to the excitation
of the cyclotron motion of short-lived ions in a Penning trap to improve the
precision of their measured mass. The theoretical description of the extracted
ion-cyclotron-resonance line shape is derived out and its correctness
demonstrated experimentally by measuring the mass of the short-lived Ca
nuclide with an uncertainty of using the ISOLTRAP Penning
trap mass spectrometer at CERN. The mass value of the superallowed beta-emitter
Ca is an important contribution for testing the conserved-vector-current
hypothesis of the electroweak interaction. It is shown that the Ramsey method
applied to mass measurements yields a statistical uncertainty similar to that
obtained by the conventional technique ten times faster.Comment: 5 pages, 4 figures, 0 table
Linearly scaling direct method for accurately inverting sparse banded matrices
In many problems in Computational Physics and Chemistry, one finds a special
kind of sparse matrices, termed "banded matrices". These matrices, which are
defined as having non-zero entries only within a given distance from the main
diagonal, need often to be inverted in order to solve the associated linear
system of equations. In this work, we introduce a new O(n) algorithm for
solving such a system, being n X n the size of the matrix. We produce the
analytical recursive expressions that allow to directly obtain the solution, as
well as the pseudocode for its computer implementation. Moreover, we review the
different options for possibly parallelizing the method, we describe the
extension to deal with matrices that are banded plus a small number of non-zero
entries outside the band, and we use the same ideas to produce a method for
obtaining the full inverse matrix. Finally, we show that the New Algorithm is
competitive, both in accuracy and in numerical efficiency, when compared to a
standard method based in Gaussian elimination. We do this using sets of large
random banded matrices, as well as the ones that appear when one tries to solve
the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy
- …