2 research outputs found

    The IκB Function of NF-κB2 p100 Controls Stimulated Osteoclastogenesis

    Get PDF
    The prototranscription factor p100 represents an intersection of the NF-κB and IκB families, potentially serving as both the precursor for the active NF-κB subunit p52 and as an IκB capable of retaining NF-κB in the cytoplasm. NF-κB–inducing kinase (NIK) controls processing of p100 to generate p52, and thus NIK-deficient mice can be used to examine the biological effects of a failure in such processing. We demonstrate that treatment of wild-type osteoclast precursors with the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) increases both expression of p100 and its conversion to p52, resulting in unchanged net levels of p100. In the absence of NIK, p100 expression is increased by RANKL, but its conversion to p52 is blocked, leading to cytosolic accumulation of p100, which, acting as an IκB protein, binds NF-κB complexes and prevents their nuclear translocation. High levels of unprocessed p100 in osteoclast precursors from NIK−/− mice or a nonprocessable form of the protein in wild-type cells impair RANKL-mediated osteoclastogenesis. Conversely, p100-deficient osteoclast precursors show enhanced sensitivity to RANKL. These data demonstrate a novel, biologically relevant means of regulating NF-κB signaling, with upstream control and kinetics distinct from the classical IκBα pathway

    NF-κB–inducing kinase controls lymphocyte and osteoclast activities in inflammatory arthritis

    Get PDF
    NF-κB is an important component of both autoimmunity and bone destruction in RA. NF-κB–inducing kinase (NIK) is a key mediator of the alternative arm of the NF-κB pathway, which is characterized by the nuclear translocation of RelB/p52 complexes. Mice lacking functional NIK have no peripheral lymph nodes, defective B and T cells, and impaired receptor activator of NF-κB ligand–stimulated osteoclastogenesis. We investigated the role of NIK in murine models of inflammatory arthritis using Nik–/– mice. The serum transfer arthritis model is initiated by preformed antibodies and required only intact neutrophil and complement systems in recipients. While Nik–/– mice had inflammation equivalent to that of Nik+/+ controls, they showed significantly less periarticular osteoclastogenesis and less bone erosion. In contrast, Nik–/– mice were completely resistant to antigen-induced arthritis (AIA), which requires intact antigen presentation and lymphocyte function but not lymph nodes. Additionally, transfer of Nik+/+ splenocytes or T cells to Rag2–/– mice conferred susceptibility to AIA, while transfer of Nik–/– cells did not. Nik–/– mice were also resistant to a genetic, spontaneous form of arthritis, generated in mice expressing both the KRN T cell receptor and H-2(g7). Thus, NIK is important in the immune and bone-destructive components of inflammatory arthritis and represents a possible therapeutic target for these diseases
    corecore