6,996 research outputs found
Complex coupled-cluster approach to an ab-initio description of open quantum systems
We develop ab-initio coupled-cluster theory to describe resonant and weakly
bound states along the neutron drip line. We compute the ground states of the
helium chain 3-10He within coupled-cluster theory in singles and doubles (CCSD)
approximation. We employ a spherical Gamow-Hartree-Fock basis generated from
the low-momentum N3LO nucleon-nucleon interaction. This basis treats bound,
resonant, and continuum states on equal footing, and is therefore optimal for
the description of properties of drip line nuclei where continuum features play
an essential role. Within this formalism, we present an ab-initio calculation
of energies and decay widths of unstable nuclei starting from realistic
interactions.Comment: 4 pages, revtex
Medium-mass nuclei from chiral nucleon-nucleon interactions
We compute the binding energies, radii, and densities for selected
medium-mass nuclei within coupled-cluster theory and employ the "bare" chiral
nucleon-nucleon interaction at order N3LO. We find rather well-converged
results in model spaces consisting of 15 oscillator shells, and the doubly
magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per
nucleon within the CCSD approximation. The binding-energy difference between
the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations.
Our computation of the one-body density matrices and the corresponding natural
orbitals and occupation numbers provides a first step to a microscopic
foundation of the nuclear shell model.Comment: 5 pages, 5 figure
Computation of spectroscopic factors with the coupled-cluster method
We present a calculation of spectroscopic factors within coupled-cluster
theory. Our derivation of algebraic equations for the one-body overlap
functions are based on coupled-cluster equation-of-motion solutions for the
ground and excited states of the doubly magic nucleus with mass number and
the odd-mass neighbor with mass . As a proof-of-principle calculation, we
consider O and the odd neighbors O and N, and compute the
spectroscopic factor for nucleon removal from O. We employ a
renormalized low-momentum interaction of the type derived
from a chiral interaction at next-to-next-to-next-to-leading order. We study
the sensitivity of our results by variation of the momentum cutoff, and then
discuss the treatment of the center of mass.Comment: 8 pages, 6 figures, 3 table
Comment on "Ab Initio study of 40-Ca with an importance-truncated no-core shell model"
In a recent Letter [Phys. Rev. Lett. 99, 092501 (2007)], Roth and Navratil
present an importance-truncation scheme for the no-core shell model. The
authors claim that their truncation scheme leads to converged results for the
ground state of 40-Ca. We believe that this conclusion cannot be drawn from the
results presented in the Letter. Furthermore, the claimed convergence is at
variance with expectations of many-body theory. In particular, coupled-cluster
calculations indicate that a significant fraction of the correlation energy is
missing.Comment: 1 page, comment on arXiv:0705.4069 (PRL 99, 092501 (2007)
Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri
The structure of polyhomogeneous space-times (i.e., space-times with metrics
which admit an expansion in terms of ) constructed by a
Bondi--Sachs type method is analysed. The occurrence of some log terms in an
asymptotic expansion of the metric is related to the non--vanishing of the Weyl
tensor at Scri. Various quantities of interest, including the Bondi mass loss
formula, the peeling--off of the Riemann tensor and the Newman--Penrose
constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9
- …