611 research outputs found
Voluntary Risk Taking By Young Bicyclists:A Case Study of University Students at Montreal
Young bicyclists in Montreal are taking voluntary risks such as bicycling without wearing helmet and braking system of bicycle although they are aware of the presence of danger. This article analyses the behaviour of young bicyclists taking voluntary risks. The university students in Montreal are considered as the case study since they are more risk takers and the bicycle is a favorite mode of transport among them. This study reveals that half of the respondents did not use helmets. They were also spontaneously taking a risk by high speeding, violating signals, bicycling in mixed traffic, ignoring protective equipment after dark, and avoiding the bicycle designated roads. They were taking voluntary risks based on their attitude, subjective norm and perceived behavioural control. They did not perceive the severity of risks since they experienced relevant and unremarkable minor injuries. The attractiveness of risk and accomplishing the risk activities encouraged the young bicyclists to take voluntary risks repeatedly. Increasing feelings of vulnerability among young bicyclists reduce voluntary risks taking attitude and physical and psychological sufferings of the victims of bicycle-related accidents. Findings of this study suggest that the City of Montreal as well as other cities consider the behaviour of bicyclists particularly the young people to avoid bicycle-related accidents along with other physical measures
Terahertz frequency standard based on three-photon coherent population trapping
A scheme for a THz frequency standard based on three-photon coherent
population trapping in stored ions is proposed. Assuming the propagation
directions of the three lasers obey the phase matching condition, we show that
stability of few 10 at one second can be reached with a precision
limited by power broadening to in the less favorable case. The
referenced THz signal can be propagated over long distances, the useful
information being carried by the relative frequency of the three optical
photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2
(24/05/2007
Recommended from our members
Development of a Variable Orifice for HNPF Fuel Channels
Control of the exit temperature of the coolant from each fuel channel of the Hallam Nuclear Power Facility reactor is obtained by adjusting the coolant flow rate by a remotely operated variable orifice. Two variable orifices were designed and the hydraulic characteristics determined. Both orifice designs utilized a tapered plug moving in and out of a restricted flow passage at the upper end of the fuel channel. Data were obtained on pressure drop as a function of flow rate at different orifice plug positions; all measurements were made using water, and data were converted to equivalent values for sodium. Either type of orifice was capable of adjusting flow rate to match the power output of a fuel element at any location in the reactor core. The temperature sensitivity (change in exit temperature per unit change in orifice plug position) of the first type of orifice was low (lO deg F/in.) when used in combination with a central fuel element, and high (7OO deg F/in.) when used with a peripheral element. The temperature sensitivity of the second type was more uniform (varying from 90 to 250 deg F/ in.). Consequently, the second type of orifice was selected for the HNPF. (auth
Analysis of fragment yield ratios in the nuclear phase transition
The critical phenomena of the liquid-gas phase transition has been
investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon
using the Landau free energy approach with isospin asymmetry as an order
parameter. Fits to the free energy of fragments showed three minima suggesting
the system to be in the regime of a first order phase transition. The relation
m =-{\partial}F/{\partial}H, which defines the order parameter and its
conjugate field H, has been experimentally verified from the linear dependence
of the mirror nuclei yield ratio data, on the isospin asymmetry of the source.
The slope parameter, which is a measure of the distance from a critical
temperature, showed a systematic decrease with increasing excitation energy of
the source. Within the framework of the Landau free energy approach, isoscaling
provided similar results as obtained from the analysis of mirror nuclei yield
ratio data. We show that the external field is primarily related to the minimum
of the free energy, which implies a modification of the source concentration
\Delta used in isospin studies
Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases
We report on experiments in which the Texas Petawatt laser irradiated a
mixture of deuterium or deuterated methane clusters and helium-3 gas,
generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and
3He(d, p)4He. We measured the yields of fusion neutrons and protons from these
reactions and found them to agree with yields based on a simple cylindrical
plasma model using known cross sections and measured plasma parameters. Within
our measurement errors, the fusion products were isotropically distributed.
Plasma temperatures, important for the cross sections, were determined by two
independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the
ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He
reactions, respectively. This experiment produced the highest ion temperature
ever achieved with laser-irradiated deuterium clusters.Comment: 16 pages, 6 figure
Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases
Two different methods have been employed to determine the plasma temperature
in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first,
the temperature was derived from time-of-flight data of deuterium ions ejected
from exploding D2 or CD4 clusters. In the second, the temperature was measured
from the ratio of the rates of two different nuclear fusion reactions occurring
in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures
determined by these two methods agree well, which indicates that: i) The ion
energy distribution is not significantly distorted when ions travel in the
disassembling plasma; ii) The kinetic energy of deuterium ions, especially the
hottest part responsible for nuclear fusion, is well described by a
near-Maxwellian distribution.Comment: 13 pages, 4 figure
Dark resonances as a probe for the motional state of a single ion
Single, rf-trapped ions find various applications ranging from metrology to
quantum computation. High-resolution interrogation of an extremely weak
transition under best observation conditions requires an ion almost at rest. To
avoid line-broadening effects such as the second order Doppler effect or rf
heating in the absence of laser cooling, excess micromotion has to be
eliminated as far as possible. In this work the motional state of a confined
three-level ion is probed, taking advantage of the high sensitivity of observed
dark resonances to the trapped ion's velocity. Excess micromotion is controlled
by monitoring the dark resonance contrast with varying laser beam geometry. The
influence of different parameters such as the cooling laser intensity has been
investigated experimentally and numerically
Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters
The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was
measured for the first time at temperatures of few keV, using the interaction
of intense ultrafast laser pulses with molecular deuterium clusters mixed with
3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the
gas jet target in order to allow the measurement of the cross-section for the
3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He
reaction was measured in order to extract the astrophysical S factor at low
energies. Our result is in agreement with other S factor parameterizations
found in the literature
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets
for the quantum system, a novel model (called AMD-V) is constructed by the
stochastic incorporation of the diffusion and the deformation of wave packets
which is calculated by Vlasov equation without any restriction on the one-body
distribution. In other words, the stochastic branching process in molecular
dynamics is formulated so that the instantaneous time evolution of the averaged
one-body distribution is essentially equivalent to the solution of Vlasov
equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body
correlation and can naturally describe the fluctuation among many channels of
the reaction. It is demonstrated that the newly introduced process of AMD-V has
drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon,
especially on the fragmentation mechanism, and AMD-V reproduces the
fragmentation data very well. Discussions are given on the interrelation among
the frameworks of AMD, AMD-V and other microscopic models developed for the
nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure
Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy
The characteristic properties of the hot nuclear matter existing at the time
of fragment formation in the multifragmentation events produced in the reaction
Zn + Sn at 40 MeV/nucleon are studied. A kinematical focusing
method is employed to determine the multiplicities of evaporated light
particles, associated with isotopically identified detected fragments. From
these data the primary isotopic yield distributions are reconstructed using a
Monte Carlo method. The reconstructed yield distributions are in good agreement
with the primary isotope distributions obtained from AMD transport model
simulations. Utilizing the reconstructed yields, power distribution, Landau
free energy, characteristic properties of the emitting source are examined. The
primary mass distributions exhibit a power law distribution with the critical
exponent, , for isotopes, but significantly deviates from
that for the lighter isotopes. Landau free energy plots show no strong
signature of the first order phase transition. Based on the Modified Fisher
Model, the ratios of the Coulomb and symmetry energy coefficients relative to
the temperature, and , are extracted as a function of A.
The extracted values are compared with results of the AMD
simulations using Gogny interactions with different density dependencies of the
symmetry energy term. The calculated values show a close relation
to the symmetry energy at the density at the time of the fragment formation.
From this relation the density of the fragmenting source is determined to be
. Using this density, the symmetry energy
coefficient and the temperature of fragmenting source are determined in a
self-consistent manner as and
MeV
- …