34 research outputs found

    Stratified spatiotemporal chaos in anisotropic reaction-diffusion systems

    Full text link
    Numerical simulations of two dimensional pattern formation in an anisotropic bistable reaction-diffusion medium reveal a new dynamical state, stratified spatiotemporal chaos, characterized by strong correlations along one of the principal axes. Equations that describe the dependence of front motion on the angle illustrate the mechanism leading to stratified chaos

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting

    Multi-Phase Patterns in Periodically Forced Oscillatory Systems

    Full text link
    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2\pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π\pi-fronts separating states with a phase shift of π\pi and π/2\pi/2-fronts separating states with a phase shift of π/2\pi/2. We find a new type of front instability where a stationary π\pi-front ``decomposes'' into a pair of traveling π/2\pi/2-fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2\pi/2-fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where stationary π\pi-fronts decompose into n traveling π/n\pi/n-fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased

    Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities

    Full text link
    Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurcation the relation of the front velocity to curvature is highly nonlinear and transitions between counterpropagating fronts become feasible. Nonuniformly curved fronts may undergo local front transitions that nucleate spiral-vortex pairs. These nucleation events provide the ingredient needed to initiate spot splitting and spiral turbulence. Similar spatio-temporal processes have been observed recently in the ferrocyanide-iodate-sulfite reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages compressed Postscript (368kb

    A Phase Front Instability in Periodically Forced Oscillatory Systems

    Full text link
    Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems may give rise to front structures separating states with different phases. A new front instability is found within bands where ωforcing/ωsystem=2n\omega_{forcing}/\omega_{system}=2n (n>1n>1). Stationary fronts shifting the oscillation phase by π\pi lose stability below a critical forcing strength and decompose into nn traveling fronts each shifting the phase by π/n\pi/n. The instability designates a transition from stationary two-phase patterns to traveling nn-phase patterns

    Phase Dynamics of Nearly Stationary Patterns in Activator-Inhibitor Systems

    Full text link
    The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and the Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and the zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wavenumbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings

    From Labyrinthine Patterns to Spiral Turbulence

    Full text link
    A new mechanism for spiral vortex nucleation in nongradient reaction diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch type front bifurcation and an instability of a planar front to transverse perturbations. Vortex nucleation by this mechanism plays an important role in inducing a transition from labyrinthine patterns to spiral turbulence. PACS numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip

    Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent Patterns

    Full text link
    Domain walls in equilibrium phase transitions propagate in a preferred direction so as to minimize the free energy of the system. As a result, initial spatio-temporal patterns ultimately decay toward uniform states. The absence of a variational principle far from equilibrium allows the coexistence of domain walls propagating in any direction. As a consequence, *persistent* patterns may emerge. We study this mechanism of pattern formation using a non-variational extension of Landau's model for second order phase transitions. PACS numbers: 05.70.Fh, 42.65.Pc, 47.20.Ky, 82.20MjComment: 12 pages LaTeX, 5 postscript figures To appear in Phys. Rev.
    corecore