34 research outputs found
Stratified spatiotemporal chaos in anisotropic reaction-diffusion systems
Numerical simulations of two dimensional pattern formation in an anisotropic
bistable reaction-diffusion medium reveal a new dynamical state, stratified
spatiotemporal chaos, characterized by strong correlations along one of the
principal axes. Equations that describe the dependence of front motion on the
angle illustrate the mechanism leading to stratified chaos
Dynamic Front Transitions and Spiral-Vortex Nucleation
This is a study of front dynamics in reaction diffusion systems near
Nonequilibrium Ising-Bloch bifurcations. We find that the relation between
front velocity and perturbative factors, such as external fields and curvature,
is typically multivalued. This unusual form allows small perturbations to
induce dynamic transitions between counter-propagating fronts and nucleate
spiral vortices. We use these findings to propose explanations for a few
numerical and experimental observations including spiral breakup driven by
advective fields, and spot splitting
Multi-Phase Patterns in Periodically Forced Oscillatory Systems
Periodic forcing of an oscillatory system produces frequency locking bands
within which the system frequency is rationally related to the forcing
frequency. We study extended oscillatory systems that respond to uniform
periodic forcing at one quarter of the forcing frequency (the 4:1 resonance).
These systems possess four coexisting stable states, corresponding to uniform
oscillations with successive phase shifts of . Using an amplitude
equation approach near a Hopf bifurcation to uniform oscillations, we study
front solutions connecting different phase states. These solutions divide into
two groups: -fronts separating states with a phase shift of and
-fronts separating states with a phase shift of . We find a new
type of front instability where a stationary -front ``decomposes'' into a
pair of traveling -fronts as the forcing strength is decreased. The
instability is degenerate for an amplitude equation with cubic nonlinearities.
At the instability point a continuous family of pair solutions exists,
consisting of -fronts separated by distances ranging from zero to
infinity. Quintic nonlinearities lift the degeneracy at the instability point
but do not change the basic nature of the instability. We conjecture the
existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where
stationary -fronts decompose into n traveling -fronts. The
instabilities designate transitions from stationary two-phase patterns to
traveling 2n-phase patterns. As an example, we demonstrate with a numerical
solution the collapse of a four-phase spiral wave into a stationary two-phase
pattern as the forcing strength within the 4:1 resonance is increased
Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities
Two front instabilities in a reaction-diffusion system are shown to lead to
the formation of complex patterns. The first is an instability to transverse
modulations that drives the formation of labyrinthine patterns. The second is a
Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar
front unstable and gives rise to a pair of counterpropagating fronts. Near the
NIB bifurcation the relation of the front velocity to curvature is highly
nonlinear and transitions between counterpropagating fronts become feasible.
Nonuniformly curved fronts may undergo local front transitions that nucleate
spiral-vortex pairs. These nucleation events provide the ingredient needed to
initiate spot splitting and spiral turbulence. Similar spatio-temporal
processes have been observed recently in the ferrocyanide-iodate-sulfite
reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages
compressed Postscript (368kb
A Phase Front Instability in Periodically Forced Oscillatory Systems
Multiplicity of phase states within frequency locked bands in periodically
forced oscillatory systems may give rise to front structures separating states
with different phases. A new front instability is found within bands where
(). Stationary fronts shifting the
oscillation phase by lose stability below a critical forcing strength and
decompose into traveling fronts each shifting the phase by . The
instability designates a transition from stationary two-phase patterns to
traveling -phase patterns
Phase Dynamics of Nearly Stationary Patterns in Activator-Inhibitor Systems
The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model
are studied using a phase dynamics approach. A Cross-Newell phase equation
describing slow and weak modulations of periodic stationary solutions is
derived. The derivation applies to the bistable, excitable, and the Turing
unstable regimes. In the bistable case stability thresholds are obtained for
the Eckhaus and the zigzag instabilities and for the transition to traveling
waves. Neutral stability curves demonstrate the destabilization of stationary
planar patterns at low wavenumbers to zigzag and traveling modes. Numerical
solutions of the model system support the theoretical findings
From Labyrinthine Patterns to Spiral Turbulence
A new mechanism for spiral vortex nucleation in nongradient reaction
diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch
type front bifurcation and an instability of a planar front to transverse
perturbations. Vortex nucleation by this mechanism plays an important role in
inducing a transition from labyrinthine patterns to spiral turbulence. PACS
numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip
Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent Patterns
Domain walls in equilibrium phase transitions propagate in a preferred
direction so as to minimize the free energy of the system. As a result, initial
spatio-temporal patterns ultimately decay toward uniform states. The absence of
a variational principle far from equilibrium allows the coexistence of domain
walls propagating in any direction. As a consequence, *persistent* patterns may
emerge. We study this mechanism of pattern formation using a non-variational
extension of Landau's model for second order phase transitions. PACS numbers:
05.70.Fh, 42.65.Pc, 47.20.Ky, 82.20MjComment: 12 pages LaTeX, 5 postscript figures To appear in Phys. Rev.