4 research outputs found

    Plant Extracts in Probiotic Encapsulation: Evaluation of their Effects on Strains Survivability in Juice and Drinkable Yogurt During Storage and an in-vitro Gastrointestinal Model

    No full text
    The present study concerned with the evaluation of the adding value from the addition of plant extracts, including those from moringa, fennel, sage and green tea, during alginate encapsulation on the viability of probiotic bacteria (L. plantarum DSM 20205 and P. acidilactici DSM 20238) in fruit juice (i.e., kiwi, prickly pear and carrot juice) and drinkable yoghurt throughout storage at 4°C. The results revealed that the survival rates of L. plantarum DSM 20205 and P. acidilactici DSM 20238 cells encapsulated with 0.05% (w/v) moringa extract were significantly higher than those of cells encapsulated with fennel and saga after storage for 30 days. The In vitro digestibility behaviour and survival of the novel capsules were studied in terms of the survival of L. plantarum DSM 20205 and P. acidilactici DSM 20238 based on sequential exposure to simulated salivary, gastric and intestinal fluids. This novel encapsulation additive significantly increased the survival of L. plantarum DSM 20205 and P. acidilactici DSM 20238 compared with the control capsules cells in simulated digestive fluids. Therefore, the appropriate amount of moringa extract for use in culture encapsulation was determined after the addition to fruit juices and drinkable yoghurt, and the effect of this extract was compared with the effect of adding green tea extract (a standard plant extract). Green tea and moringa extracts enhanced the stability of probiotic beads in all products compared to the controls after storage. Encapsulated L. plantarum DSM 20205 and P. acidilactici DSM 20238 showed better survivabilities than the control capsules. The studied strains showed better survival in prickly pear juice and drinkable yoghurt throughout storage at 4°C for 30 days

    Extend Shelf-life of Vacuum-Packaged Herring Fish Fillets using Garlic and Ginger Extracts

    No full text
    The present study explored the preservation effect of the garlic and ginger extract (GGE) on herring fish fillets under refrigerated storage (4°C) for 8 weeks. The antioxidant and antimicrobial activity of GGE was evaluated: GGE exhibited a reasonable antioxidant activity and antimicrobial potency against some foodborne pathogens such as Bacillus subtilis DB 100 host, Clostridium botulinum ATCC 3584, Escherichia coli BA 12296, Salmonella senftenberg ATCC 8400, and Staphylococcus aureus NCTC 10788. The effect of GGE on the quality and shelf life of herring fish fillet was screened. The study findings highlight the effects of GGE treatment: significant microbial growth inhibition, postponed lipid oxidation, decreased thiobarbituric acid reactive substances (TBARS) concentration and decreased protein oxidation. Additionally, GGE treatment preserved the pleasant appearance of the fish compared to that of the control after 8weeks of storage. This study verified that GGE effectively maintained herring fish fillet quality and safety compared to the control treatment and the treatments with nisin or butylated hydroxyl-toluene (BHT)

    Occurrence of Toxic Biogenic Amines in Various Types of Soft and Hard Cheeses and Their Control by Bacillus polymyxa D05-1

    No full text
    Egyptian cheeses are considered an important part of the Egyptian diet. This study aimed to examine 60 random samples of different types of commercial cheeses in Egypt, including soft cheeses (Domiati and Tallaga) and hard cheeses (Cheddar and Ras). The samples were subjected to chemical and microbial examination. Biogenic amines (BAs) are nitrogenous compounds found in a variety of foods; their presence is undesirable and related to spoilage, and can result in toxicological effects in humans. Thus, BAs were determined by using a high-performance liquid chromatography (HPLC) analysis. Moreover, the ability of Bacillus polymyxa D05-1 to reduce levels of experimentally added biogenic amines during the manufacturing of Tallaga cheese was investigated. The obtained results revealed variations in the chemical composition between the investigated samples. Furthermore, many cheese samples contained high levels of BAs, including histamine, tyramine and putrescine. Domiati cheese had the highest levels of BAs, followed by Tallaga and Cheddar, whereas Ras cheese had the lowest levels. The existence of yeasts, molds, coliforms and the high levels of BAs in cheese samples indicate the unsanitary conditions in which they were made and stored. Furthermore, addition of B. polymyxa D05-1 during Tallaga cheese manufacturing resulted in a reduction in BA levels
    corecore