2,593 research outputs found

    Excitable Patterns in Active Nematics

    Get PDF
    We analyze a model of mutually-propelled filaments suspended in a two-dimensional solvent. The system undergoes a mean-field isotropic-nematic transition for large enough filament concentrations and the nematic order parameter is allowed to vary in space and time. We show that the interplay between non-uniform nematic order, activity and flow results in spatially modulated relaxation oscillations, similar to those seen in excitable media. In this regime the dynamics consists of nearly stationary periods separated by "bursts" of activity in which the system is elastically distorted and solvent is pumped throughout. At even higher activity the dynamics becomes chaotic.Comment: 4 pages, 4 figure

    Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection

    Full text link
    Iron acquisition, mediated by specific outer membrane receptors, is critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC). The role of specific iron sources in vivo , however, remains largely unknown. In this study, we identified a 79 kDa haem receptor, h ae m a cquisition protein Hma, and established that it functions independently of ChuA to mediate haemin uptake by UPEC strain CFT073. We demonstrated that expression of hma promotes TonB-dependent haemin utilization and the Hma protein binds haemin with high affinity ( K d  = 8 μM). Hma, however, lacks conserved His residues shown to mediate haem uptake by other bacterial receptors. In contrast, we identified Tyr-126 as a residue necessary for Hma-mediated haemin utilization. In a murine co-infection model of UTI, an isogenic hma mutant was out-competed by wild-type CFT073 in the kidneys ( P  < 0.001) and spleens ( P  <  0.0001) of infected mice, indicating its expression provided a competitive advantage in these organs. Furthermore, a hma chuA double mutant, which is unable to utilize haemin, was unable to colonize the kidneys to wild-type levels during independent infection ( P  = 0.02). Thus, we demonstrate that UPEC requires haem for kidney colonization and that uptake of this iron source is mediated, in part, by the novel receptor, Hma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71590/1/j.1365-2958.2008.06509.x.pd

    Fluctuation-dissipation ratios in the dynamics of self-assembly

    Full text link
    We consider two seemingly very different self-assembly processes: formation of viral capsids, and crystallization of sticky discs. At low temperatures, assembly is ineffective, since there are many metastable disordered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract information about the degree of this frustration. We show that our analysis is a useful indicator of the long term fate of the system, based on the early stages of assembly.Comment: 8 pages, 6 figure

    Dissemination and Systemic Colonization of Uropathogenic Escherichia coli in a Murine Model of Bacteremia

    Get PDF
    Infection with uropathogenic Escherichia coli (UPEC), the causative agent of most uncomplicated urinary tract infections, proceeds in an ascending manner and, if left untreated, may result in bacteremia and urosepsis. To examine the fate of UPEC after its entry into the bloodstream, we developed a murine model of sublethal bacteremia. CBA/J mice were inoculated intravenously with 1 × 106 CFU of pyelonephritis strain E. coli CFT073 carrying a bioluminescent reporter. Biophotonic imaging, used to monitor the infection over 48 h, demonstrated that the bacteria disseminated systemically and appeared to localize at discrete sites. UPEC was recovered from the spleen, liver, kidneys, lungs, heart, brain, and intestines as early as 20 min postinoculation, peaking at 24 h postinoculation. A nonpathogenic E. coli K-12 strain, however, disseminated at significantly lower levels (P < 0.01) and was cleared from the liver and cecum by 24 h postinoculation. Isogenic mutants lacking type 1 fimbriae, P fimbriae, capsule, TonB, the heme receptors Hma and ChuA, or particularly the sialic acid catabolism enzyme NanA were significantly outcompeted by wild-type CFT073 during bacteremia (P < 0.05), while flagellin and hemolysin mutants were not

    Mucosal Immunization with Iron Receptor Antigens Protects against Urinary Tract Infection

    Get PDF
    Uncomplicated infections of the urinary tract, caused by uropathogenic Escherichia coli, are among the most common diseases requiring medical intervention. A preventive vaccine to reduce the morbidity and fiscal burden these infections have upon the healthcare system would be beneficial. Here, we describe the results of a large-scale selection process that incorporates bioinformatic, genomic, transcriptomic, and proteomic screens to identify six vaccine candidates from the 5379 predicted proteins encoded by uropathogenic E. coli strain CFT073. The vaccine candidates, ChuA, Hma, Iha, IreA, IroN, and IutA, all belong to a functional class of molecules that is involved in iron acquisition, a process critical for pathogenesis in all microbes. Intranasal immunization of CBA/J mice with these outer membrane iron receptors elicited a systemic and mucosal immune response that included the production of antigen-specific IgM, IgG, and IgA antibodies. The cellular response to vaccination was characterized by the induction and secretion of IFN-γ and IL-17. Of the six potential vaccine candidates, IreA, Hma, and IutA provided significant protection from experimental infection. In immunized animals, class-switching from IgM to IgG and production of antigen-specific IgA in the urine represent immunological correlates of protection from E. coli bladder colonization. These findings are an important first step toward the development of a subunit vaccine to prevent urinary tract infections and demonstrate how targeting an entire class of molecules that are collectively required for pathogenesis may represent a fundamental strategy to combat infections

    Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences

    Get PDF
    A long-term, high time-resolution volatile organic compound (VOC) data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS) was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS), a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene), oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK) plus methacrolein (MACR), methanol, acetone, methyl ethyl ketone (MEK), acetaldehyde, and acetic acid), and aromatic compounds (benzene, toluene, C&lt;sub&gt;8&lt;/sub&gt; and C&lt;sub&gt;9&lt;/sub&gt; aromatics). Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK) with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR) that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of ~0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene) and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways

    Vortex Glass and Vortex Liquid in Oscillatory Media

    Get PDF
    We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    Full text link
    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.Comment: 4 pages, 4 figure

    Interaction of Vortices in Complex Vector Field and Stability of a ``Vortex Molecule''

    Full text link
    We consider interaction of vortices in the vector complex Ginzburg--Landau equation (CVGLE). In the limit of small field coupling, it is found analytically that the interaction between well-separated defects in two different fields is long-range, in contrast to interaction between defects in the same field which falls off exponentially. In a certain region of parameters of CVGLE, we find stable rotating bound states of two defects -- a ``vortex molecule".Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
    corecore