3 research outputs found

    Signature splitting inversion and backbending in 80Rb

    Full text link
    High spin states of 80Rb are studied via the fusion-evaporation reactions 65Cu+19F, 66Zn+18O and 68Zn+16O with the beam energies of 75 MeV, 76 MeV and 80 MeV, respectively. Twenty-three new states with twenty-eight new \gamma transitions were added to the previously proposed level scheme, where the second negative-parity band is significantly pushed up to spins of 22^{-} and 15^{-} and two new sidebands are built on the known first negative-parity band. Two successive band crossings with frequencies 0.51 MeV and 0.61 MeV in the \alpha=0 branch as well as another one in the \alpha=1 branch of the second negative-parity band are observed for the first time. Signature inversions occur in the positive- and first negative-parity bands at the spins of 11\hbar and 15\hbar, respectively. The signature splitting is seen obviously in the second negative-parity band, but the signature inversion is not observed. It is also found that the structure of the two negative-parity bands is similar to that of its isotone ^{82}Y. Signature inversion in the positive-parity yrast band with configuration \pi g_{9/2} \otimes \nu g_{9/2} in this nucleus is discussed using the projected shell model (PSM)
    corecore