35 research outputs found

    Adaptive optics: principles and applications in ophthalmology

    Get PDF
    This is a comprehensive review of the principles and applications of adaptive optics (AO) in ophthalmology. It has been combined with flood illumination ophthalmoscopy, scanning laser ophthalmoscopy, as well as optical coherence tomography to image photoreceptors, retinal pigment epithelium (RPE), retinal ganglion cells, lamina cribrosa and the retinal vasculature. In this review, we highlight the clinical studies that have utilised AO to understand disease mechanisms. However, there are some limitations to using AO in a clinical setting including the cost of running an AO imaging service, the time needed to scan patients, the lack of normative databases and the very small size of area imaged. However, it is undoubtedly an exceptional research tool that enables visualisation of the retina at a cellular level

    Longitudinal genotype-phenotype analysis in 86 PAX6-related aniridia patients

    Get PDF
    Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterised by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma and aniridia related keratopathy (ARK). Genotype-phenotype correlations have previously been described, however detailed longitudinal studies of aniridia are less commonly reported. We identified eighty-six patients from sixty-two unrelated families with molecularly confirmed heterozygous PAX6 variants from a United Kingdom (UK)-based single-centre ocular genetics service. They were categorised into mutation groups and retrospective review of baseline to most recent clinical characteristics (ocular and systemic) were recorded. One hundred and seventy-two eyes were evaluated, with a mean follow up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2%, and foveal hypoplasia in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6% and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention varied amongst mutation groups. Overall, the missense mutation sub-group had the mildest phenotype, and surgically naïve eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8%, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the United Kingdom, providing insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features

    The Diagnostic Accuracy of Double-Layer Sign in Detection of Macular Neovascularization Secondary to Central Serous Chorioretinopathy

    Get PDF
    PURPOSE: To investigate the diagnostic value of elevated retinal pigment epithelium (RPE) and double-layer sign (DLS) in identifying macular neovascularization (MNV) secondary to central serous chorioretinopathy (CSCR). DESIGN: Retrospective, cross-sectional study. METHODS: Patients with CSCR underwent optical coherence tomography (OCT) and OCT angiography (OCT-A) scanning at Moorfields Eye Hospital. OCT scans were reviewed to identify the presence/absence of an RPE elevation. The maximum length and maximum height of the elevated RPE were measured. A minimum length of 1000 µm and a maximum height of 150 µm were used to define the "double-layer sign". Other qualitative anatomical features were also graded from OCT scans. OCT-A was examined to confirm the presence/absence of MNV. Binary logistic regression analyses were used to assess the association between OCT features and the detection of MNV on OCT-A. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the diagnostic accuracy. RESULTS: One hundred and sixty-three eyes from 132 patients were included. Elevated RPE was detected in 148 eyes (91%). OCT-A-confirmed MNV was detected in 54 eyes (33%). The sensitivity and specificity of RPE elevation were 100% and 13.8%, respectively. DLS was identified in 95 eyes (58%). The sensitivity and specificity of DLS for detecting MNV were 87% and 56%, respectively. Hyper-reflectivity and non-homogeneity of the sub-RPE space were independently associated with MNV within the DLS (odds ratio, 17.7 and 14.8, p<0.001 and p=0.02, respectively). None of the other demographic or anatomical features associated with MNV. The presence of non-homogeneous hyper-reflective RPE elevation had a sensitivity and specificity of 98% and 67%, with PPV and NPV of 60% and 99%, respectively. CONCLUSIONS: Non-homogeneous and hyper-reflective space under an elevated RPE of any length or height indicates an eye with higher risk of MNV than DLS. OCT-A should at least be performed for these eyes to confirm the presence of MNV and treat accordingly

    Investigating Biomarkers for USH2A Retinopathy Using Multimodal Retinal Imaging

    Get PDF
    Pathogenic mutations in USH2A are a leading cause of visual loss secondary to non-syndromic or Usher syndrome-associated retinitis pigmentosa (RP). With an increasing number of RP-targeted clinical trials in progress, we sought to evaluate the photoreceptor topography under-lying patterns of loss observed on clinical retinal imaging to guide surrogate endpoint selection in USH2A retinopathy. In this prospective cross-sectional study, twenty-five patients with molecularly confirmed USH2A-RP underwent fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO) retinal imaging. Analysis comprised measurement of FAF horizontal inner (IR) and outer (OR) hyperautofluorescent ring diameter; SD-OCT ellipsoid zone (EZ) and external limiting membrane (ELM) width, normalised EZ reflectance; AOSLO foveal cone density and intact macular photoreceptor mosaic (IMPM) diam-eter. Thirty-two eyes from 16 patients (mean age ± SD, 36.0 ± 14.2 years) with USH2A-associated Usher syndrome type 2 (n = 14) or non-syndromic RP (n = 2) met the inclusion criteria. Spatial align-ment was observed between IR-EZ and OR-ELM diameters/widths (p <0.001). The IMPM border occurred just lateral to EZ loss (p < 0.001), although sparser intact photoreceptor inner segments were detected until ELM disruption. EZ width and IR diameter displayed a biphasic relationship with cone density whereby slow cone loss occurred until retinal degeneration reached ~1350 µm from the fovea, beyond which greater reduction in cone density followed. Normalised EZ reflectance and cone density were significantly associated (p <0.001). As the strongest correlate of cone density (p < 0.001) and best-corrected visual acuity (p <0.001), EZ width is the most sensitive biomarker of structural and functional decline in USH2A retinopathy, rendering it a promising trial endpoint

    Characterisation of microvascular abnormalities using OCT angiography in patients with biallelic variants in USH2A and MYO7A

    Get PDF
    AIMS: Using optical coherence tomography angiography (OCTA) to characterise microvascular changes in the retinal plexuses and choriocapillaris (CC) of patients with MYO7A and USH2A mutations and correlate with genotype, retinal structure and function. METHODS: Twenty-seven patients with molecularly confirmed USH2A (n=21) and MYO7A (n=6) mutations underwent macular 6×6 mm OCTA using the AngioVue. Heidelberg spectral-domain OCT scans and MAIA microperimetry were also performed, the preserved ellipsoid zone (EZ) band width and mean macular sensitivity (MS) were recorded. OCTA of the inner retina, superficial capillary plexus (SCP), deep capillary plexus (DCP) and CC were analysed. Vessel density (VD) was calculated from the en face OCT angiograms of retinal circulation. RESULTS: Forty-eight eyes with either USH2A (n=37, mean age: 34.4±12.2 years) or MYO7A (n=11, mean age: 37.1±12.4 years), and 35 eyes from 18 age-matched healthy participants were included. VD was significantly decreased in the retinal circulation of patients with USH2A and MYO7A mutations compared with controls (p<0.001). Changes were observed in both the SCP and DCP, but no differences in retinal perfusion were detected between USH2A and MYO7A groups. No vascular defects were detected in CC of the USH2A group, but peripheral defects were detected in older MYO7A patients from the fourth decade of life. VD in the DCP showed strong association with MS and EZ width (Spearman's rho =0.64 and 0.59, respectively, p<0.001). CONCLUSION: OCTA was able to detect similar retinal microvascular changes in patients with USH2A and MYO7A mutations. The CC was generally affected in MYO7A mutations. OCT angiography may further enhance our understanding of inherited eye diseases and their phenotype-genotype associations

    Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography

    Get PDF
    Purpose: To describe an automated algorithm to quantify the foveal avascular zone (FAZ), using optical coherence tomography angiography (OCTA), and to compare its performance for diagnosis of diabetic retinopathy (DR) and association with best-corrected visual acuity (BCVA) to that of extrafoveal avascular area (EAA). Methods: We obtained 3 × 3-mm macular OCTA scans in diabetic patients with various levels of DR and healthy controls. An algorithm based on a generalized gradient vector flow (GGVF) snake model detected the FAZ, and metrics assessing FAZ size and irregularity were calculated. We compared the automated FAZ segmentation to manual delineation and tested the within-visit repeatability of FAZ metrics. The correlations of two conventional FAZ metrics, two novel FAZ metrics, and EAA with DR severity and BCVA, as determined by Early Treatment Diabetic Retinopathy Study (ETDRS) charts, were assessed. Results: Sixty-six eyes from 66 diabetic patients and 19 control eyes from 19 healthy participants were included. The agreement between manual and automated FAZ delineation had a Jaccard index > 0.82, and the repeatability of automated FAZ detection was excellent in eyes at all levels of DR severity. FAZ metrics that incorporated both FAZ size and shape irregularity had the strongest correlation with clinical DR grade and BCVA. Of all the tested OCTA metrics, EAA had the greatest sensitivity in differentiating diabetic eyes without clinical evidence of retinopathy, mild to moderate nonproliferative DR (NPDR), and severe NPDR to proliferative DR from healthy controls. Conclusions: The GGVF snake algorithm tested in this study can accurately and reliably detect the FAZ, using OCTA data at all DR severity grades, and may be used to obtain clinically useful information from OCTA data regarding macular ischemia in patients with diabetes. While FAZ metrics can provide clinically useful information regarding macular ischemia, and possibly visual acuity potential, EAA measurements may be a better biomarker for DR

    Longitudinal genotype-phenotype analysis in 86 PAX6-related aniridia patients

    Get PDF
    Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterised by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma and aniridia related keratopathy (ARK). Genotype-phenotype correlations have previously been described, however detailed longitudinal studies of aniridia are less commonly reported. We identified eighty-six patients from sixty-two unrelated families with molecularly confirmed heterozygous PAX6 variants from a United Kingdom (UK)-based single-centre ocular genetics service. They were categorised into mutation groups and retrospective review of baseline to most recent clinical characteristics (ocular and systemic) were recorded. One hundred and seventy-two eyes were evaluated, with a mean follow up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2%, and foveal hypoplasia in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6% and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention varied amongst mutation groups. Overall, the missense mutation sub-group had the mildest phenotype, and surgically naïve eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8%, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the United Kingdom, providing insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features

    Prospective deep phenotyping of choroideremia patients using multimodal structure-function approaches

    Get PDF
    OBJECTIVE: To investigate the retinal changes in choroideremia (CHM) patients to determine correlations between age, structure and function. SUBJECTS/METHODS: Twenty-six eyes from 13 male CHM patients were included in this prospective longitudinal study. Participants were divided into <50-year (n = 8) and ≥50-year (n = 5) old groups. Patients were seen at baseline, 6-month, and 1-year visits. Optical coherence tomography (OCT), OCT angiography, and fundus autofluorescence were performed to measure central foveal (CFT) and subfoveal choroidal thickness (SCT), as well as areas of preserved choriocapillaris (CC), ellipsoid zone (EZ), and autofluorescence (PAF). Patients also underwent functional investigations including visual acuity (VA), contrast sensitivity (CS), colour testing, microperimetry, dark adaptometry, and handheld electroretinogram (ERG). Vision-related quality-of-life was assessed by using the NEI-VFQ-25 questionnaire. RESULTS: Over the 1-year follow-up period, progressive loss was detected in SCT, EZ, CC, PAF, and CFT. Those ≥50-years exhibited more structural and functional defects with SCT, EZ, CC, and PAF showing strong correlation with patient age (rho ≤ -0.47, p ≤ 0.02). CS and VA did not change over the year, but CS was significantly correlated with age (rho = -0.63, p = 0.001). Delayed to unmeasurable dark adaptation, decreased colour discrimination and no detectable ERG activity were observed in all patients. Minimal functional deterioration was observed over one year with a general trend of slower progression in the ≥50-years group. CONCLUSIONS: Quantitative structural parameters including SCT, CC, EZ, and PAF are most useful for disease monitoring in CHM. Extended follow-up studies are required to determine longitudinal functional changes

    Automated quantification of nonperfusion areas in 3 vascular plexuses with optical coherence tomography angiography in eyes of patients with diabetes

    No full text
    IMPORTANCE: Diabetic retinopathy (DR) is a leading cause of vision loss that is managed primarily through qualitative clinical examination of the retina. Optical coherence tomography angiography (OCTA) may offer an objective and quantitative method of evaluating DR. OBJECTIVE: To quantify capillary nonperfusion in 3 vascular plexuses in the macula of eyes patients with diabetes of various retinopathy severity using projection-resolved OCTA (PR-OCTA). DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional study at a tertiary academic center comprising 1 eye each from healthy control individuals and patients with diabetes at different severity stages of retinopathy. Data were acquired and analyzed between January 2015 and December 2017. MAIN OUTCOMES AND MEASURES Foveal avascular zone area, extrafoveal avascular area (EAA), and the sensitivity of detecting levels of retinopathy. RESULTS: The study included 39 control individuals (20 women [51%]; mean [SD] age, 43.41 [19.37] years); 16 patients with diabetes without retinopathy (8 women [50%]; mean [SD] age, 56.50 [12.43] years); 23 patients with mild to moderate nonproliferative DR (18 women [78%]; mean [SD] age, 62.48 [10.55] years); and 32 patients with severe nonproliferative DR or proliferative DR (12 women [38%]; mean age, 53.41 [14.05] years). Mean (SD) foveal avascular zone area was 0.203 (0.103) mm2for control individuals, 0.192 (0.084) mm2for patients with diabetes without retinopathy, 0.243 [0.079] mm2for mild to moderate nonproliferative DR, and 0.359 (0.275) mm2for severe nonproliferative DR or proliferative DR. Mean (SD) EAA in whole inner retinal slab in these groups, respectively, were 0.020 (0.031) mm2, 0.034 (0.047) mm2, 0.038 (0.040) mm2, and 0.237 (0.235) mm2. The mean (SD) sum of EAA from 3 segmented plexuses in each of the respective groups were 0.103 (0.169) mm2, 0.213 (0.242) mm2, 0.451 (0.243) mm2, and 1.325 (1.140) mm2. With specificity fixed at 95%, using EAA in inner retinal slab, the sensitivity of detecting patients with diabetes from healthy control individuals was 28% (95% CI, 18%-40%), 31% for patients with DR (95% CI, 19%-45%), and 47% for patients with severe DR (95% CI, 29%-65%) from whole inner retinal EAA. With the sum of EAA from 3 individual plexuses, the sensitivities were 69% (95% CI, 57%-80%), 82% (95% CI, 70%-91%), and 97% (95% CI, 85%-100%), respectively. Avascular areas were not associated with signal strength index. The commercial vessel density from the 2-plexus scheme distinguished the groups with lower sensitivity and were dependent on SSI. CONCLUSIONS AND RELEVANCE: Automatically quantified avascular areas from a 3-layer segmentation scheme using PR-OCTA distinguished levels of retinopathy with a greater sensitivity than avascular areas from unsegmented inner retinal slab or measurements from a commercially available vessel density in 2-layer scheme. Additional studies are needed to investigate the applicability of nonperfusion parameters in clinical settings
    corecore