11 research outputs found
Offline Handwritten Signature Verification - Literature Review
The area of Handwritten Signature Verification has been broadly researched in
the last decades, but remains an open research problem. The objective of
signature verification systems is to discriminate if a given signature is
genuine (produced by the claimed individual), or a forgery (produced by an
impostor). This has demonstrated to be a challenging task, in particular in the
offline (static) scenario, that uses images of scanned signatures, where the
dynamic information about the signing process is not available. Many
advancements have been proposed in the literature in the last 5-10 years, most
notably the application of Deep Learning methods to learn feature
representations from signature images. In this paper, we present how the
problem has been handled in the past few decades, analyze the recent
advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory,
Tools and Applications (IPTA 2017