2,529 research outputs found

    Fuel Production Using Membrane Reactors

    Get PDF
    The constant increase in population has led to greater fossil fuel consumption, and subsequently a significant increase in greenhouse gases emission to the atmosphere. This presents a serious threat to the environment and impacts climate change to a great extent. Fossil fuel supplies are depleting fast, and the price of these fuels is also increasing due to their heightened demand. The environmental concerns regarding this are the increased emissions of harmful pollutants such as carbon dioxide, sulphur dioxide and hydrocarbons. Here we review the alternative fuel technologies which are currently employed to aid the eradication of the current environmental problems. Most notably, this review will demonstrate how membrane reactors are implemented to improve and intensify the existing renewable fuel production processes. Furthermore, the advantages of membrane reactors when compared to the conventional ones, will be discussed; and the environmental benefits these particular reactors pose will also be highlighted. We will showcase how these membrane reactors have been applied successfully to improve biodiesel, hydrogen and Fischer-Tropsch synthesis processes. The application of membranes aids the increase in the conversion of desired products, whilst shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Moreover, they have also demonstrated a significant reduction in the separation and purification of impurities, as they couple them both in one step. This shows drastic economic and energy requirement reductions in the amount of wastewater treatment associated with conventional fuel production reactor

    Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors

    Get PDF
    A Computational Fluid Dynamic (CFD) model was derived and validated, in order to, investigate the hydrodeoxygenation 9 reaction of 4-propylguaiacol, which is a lignin-derived compound present in bio-oil. A 2-D packed bed microreactor was 10 simulated using pre-sulphided NiMo/Al2O3 solid catalyst in isothermal operation. A pseudo-homogeneous model was first 11 created to validate the experimental results from literature. Various operational parameters were investigated and validated 12 with the experimental data, such as temperature, pressure and liquid flow rate; and it was found that the CFD findings were 13 in very good agreement with the results from literature. The model was then upgraded to that of a detailed multiphase 14 configuration; and phenomena such as internal and external mass transfer limitations were investigated, as well as, reactant 15 concentrations on the rate of 4-propylguaiacol. Both models agreed with the experimental data, and therefore confirm their 16 ability for applications related to the prediction of the behaviour of bio-oil compounds hydrodeoxygenation

    Fuel production using membrane reactors: a review

    Get PDF
    Population growth has led to higher consumption of fossil fuel, and subsequently to a major increase of greenhouse gases emissions to the atmosphere, thus inducing global warming. Fossil fuel supplies are depleting, and the price of these fuels is increasing. Moreover, there are concerns about related emissions of toxic pollutants such as sulphur dioxide and aromatic hydrocarbons. Here, we review alternative fuel technologies. We focus on how membrane reactors improve the existing production processes of renewable fuels. Advantages and environmental benefits of membrane reactors are compared to the conventional techniques. Membrane reactors have been applied successfully to improve biodiesel, hydrogen and Fischer–Tropsch synthesis. Membranes help the conversion of products, whilst shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Overall, membrane reactors reduce cost and energy needed for the treatment of wastewater from fuel production

    A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry

    Get PDF
    Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This article reviews the practices that govern the management approaches utilized in the developed world for industrial spent catalysts. It critically assesses the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a strategy for a way forward based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed at length covering conventional methods of valuable metals and chemicals recovery (e.g., hydrometallurgical, solid–liquid and liquid–liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorization industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait

    Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors

    Get PDF
    A process simulation model was created using Aspen Plus to investigate the hydrodeoxygenation of 4-propylguaiacol, a model component in lignin-derived pyrolysis oil, over a presulphided NiMo/Al2O3 solid catalyst. Process simulation modelling methods were used to develop the pseudo-homogeneous packed bed microreactor. The reaction was conducted at 400 °C and an operating pressure of 300 psig with a 4-propylguaiacol liquid flow rate of 0.03 mL·min−1 and a hydrogen gas flow rate of 0.09 mL·min−1. Various operational parameters were investigated and compared to the experimental results in order to establish their effect on the conversion of 4-propylguaiacol. The parameters studied included reaction temperature, pressure, and residence time. Further changes to the simulation were made to study additional effects. In doing so, the operation of the same reactor was studied adiabatically, rather than isothermally. Moreover, different equations of state were used. It was observed that the conversion was enhanced with increasing temperature, pressure, and residence time. The results obtained demonstrated a good model validation when compared to the experimental results, thereby confirming that the model is suitable to predict the hydrodeoxygenation of pyrolysis oil

    Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies

    Get PDF
    The use of hydrogen as a renewable fuel has gained increasing attention in recent years due to its abundance and efficiency. The decomposition of formic acid for hydrogen production under mild conditions of 30 °C has been investigated using a 5 wt.% Pd/C catalyst and a fixed bed microreactor. Furthermore, a comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to validate the experimental data. The results showed a very good agreement between the CFD studies and experimental work. Catalyst reusability studies have shown that after 10 reactivation processes, the activity of the catalyst can be restored to offer the same level of activity as the fresh sample of the catalyst. The CFD model was able to simulate the catalyst deactivation based on the production of the poisoning species CO, and a sound validation was obtained with the experimental data. Further studies demonstrated that the conversion of formic acid enhances with increasing temperature and decreasing liquid flow rate. Moreover, the CFD model established that the reaction system was devoid of any internal and external mass transfer limitations. The model developed can be used to successfully predict the decomposition of formic acid in microreactors for potential fuel cell applications

    Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors

    Get PDF
    A process simulation model was created using Aspen Plus to investigate the hydrodeoxygenation of 4-propylguaiacol, a model component in lignin-derived pyrolysis oil, over a presulphided NiMo/Al2O3 solid catalyst. Process simulation modelling methods were used to develop the pseudo-homogeneous packed bed microreactor. The reaction was conducted at 400 °C and an operating pressure of 300 psig with a 4-propylguaiacol liquid flow rate of 0.03 mL·min−1 and a hydrogen gas flow rate of 0.09 mL·min−1. Various operational parameters were investigated and compared to the experimental results in order to establish their effect on the conversion of 4-propylguaiacol. The parameters studied included reaction temperature, pressure, and residence time. Further changes to the simulation were made to study additional effects. In doing so, the operation of the same reactor was studied adiabatically, rather than isothermally. Moreover, different equations of state were used. It was observed that the conversion was enhanced with increasing temperature, pressure, and residence time. The results obtained demonstrated a good model validation when compared to the experimental results, thereby confirming that the model is suitable to predict the hydrodeoxygenation of pyrolysis oil

    Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management

    Get PDF
    Over the past few decades, life cycle assessment (LCA) has been established as a critical tool for the evaluation of the environmental burdens of chemical processes and materials cycles. The increasing amount of plastic solid waste (PSW) in landfills has raised serious concern worldwide for the most effective treatment. Thermochemical post-treatment processes, such as pyrolysis, seem as the most appropriate method to treat this type of waste in an effective manner. This is because such processes lead to the production of useful chemicals or hydrocarbon oil of high calorific value (i.e. bio-oil in the case of pyrolysis). LCA seems as the most appropriate tool for the process design from an environmental context, however, addressed limitations including initial assumptions, functional unit and system boundaries, as well as lack of regional database and exclusion of socio-economic aspects, may hinder the final decision. This review aims to address the benefits of pyrolysis as a method for PSW treatment and raise the limitations and gaps of conducted research via an environmental standpoint

    CO2 capture using membrane contactors: a systematic literature review

    Get PDF
    With fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the acknowledgment of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2

    Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production

    Get PDF
    For the first time, a fully comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to predict the selective catalytic deoxygenation of palm oil to produce green diesel over an Ni/ZrO2 catalyst. The modelling results were compared to experimental data, and a very good validation was obtained. It was found that for the Ni/ZrO2 catalyst, the paraffin conversion increased with temperature, reaching a maximum value (>95%) at 300 °C. However, temperatures greater than 300 °C resulted in a loss of conversion due to the fact of catalyst deactivation. In addition, at longer times, the model predicted that the catalyst activity would decline faster at temperatures higher than 250 °C. The CFD model was able to predict this deactivation by relating the catalytic activity with the reaction temperature
    • …
    corecore