5 research outputs found

    Multi-loop Model Reference Adaptive PID Control for Fault-Tolerance

    No full text
    This study demonstrates an application of multi-loop Model Reference Adaptive Control (MRAC) structure for enhancement of fault tolerance performance of closed-loop PID control systems. The presented multi-loop MRAC-PID control structure can be used to transform a conventional PID control system to an adaptive control system by combining an outer adaptation loop. This study shows that the proposed control structure can improve fault tolerance and fault detection performance of the existing closed-loop PID control systems without modifying any coefficients of PID controllers, and this asset is very useful for increasing robust control performance of the existing industrial control systems. This advantage originates from the reference input shaping technique that is implemented to combine adaptation and control loops. Numerical and experimental studies are presented to illustrate an application of the MRAC-PID control structure for rotor control applications

    Multi-loop Model Reference Adaptive PID Control for Fault-Tolerance

    No full text
    This study demonstrates an application of multi-loop Model Reference Adaptive Control (MRAC) structure for enhancement of fault tolerance performance of closed-loop PID control systems. The presented multi-loop MRAC-PID control structure can be used to transform a conventional PID control system to an adaptive control system by combining an outer adaptation loop. This study shows that the proposed control structure can improve fault tolerance and fault detection performance of the existing closed-loop PID control systems without modifying any coefficients of PID controllers, and this asset is very useful for increasing robust control performance of the existing industrial control systems. This advantage originates from the reference input shaping technique that is implemented to combine adaptation and control loops. Numerical and experimental studies are presented to illustrate an application of the MRAC-PID control structure for rotor control applications
    corecore