8 research outputs found

    Identification of a Dual-Specific T Cell Epitope of the Hemagglutinin Antigen of an H5 Avian Influenza Virus in Chickens

    Get PDF
    Avian influenza viruses (AIV) of the H5N1 subtype have caused morbidity and mortality in humans. Although some migratory birds constitute the natural reservoir for this virus, chickens may play a role in transmission of the virus to humans. Despite the importance of avian species in transmission of AIV H5N1 to humans, very little is known about host immune system interactions with this virus in these species. The objective of the present study was to identify putative T cell epitopes of the hemagglutinin (HA) antigen of an H5 AIV in chickens. Using an overlapping peptide library covering the HA protein, we identified a 15-mer peptide, H5(246-260), within the HA1 domain which induced activation of T cells in chickens immunized against the HA antigen of an H5 virus. Furthermore, H5(246-260) epitope was found to be presented by both major histocompatibility complex (MHC) class I and II molecules, leading to activation of CD4+ and CD8+ T cell subsets, marked by proliferation and expression of interferon (IFN)-gamma by both of these cell subsets as well as the expression of granzyme A by CD8+ T cells. This is the first report of a T cell epitope of AIV recognized by chicken T cells. Furthermore, this study extends the previous finding of the existence of dual-specific epitopes in other species to chickens. Taken together, these results elucidate some of the mechanisms of immune response to AIV in chickens and provide a platform for creation of rational vaccines against AIV in this species

    B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions.

    Get PDF
    B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection

    The role of the cellular prion protein in the immune system

    No full text
    Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(–/–) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function

    Fibroblast pathology in inflammatory joint disease

    No full text
    corecore