126 research outputs found
Umgang mit dem Prostatakarzinom bei über 75-jährigen Männern: Aktiv oder passiv?
Zusammenfassung: Die steigende Lebenserwartung und die zunehmende Zahl älterer Menschen in der Bevölkerung westlicher Industrienationen rücken das Prostatakarzinom (PCa) im höheren Lebensalter zunehmend in den Fokus des Interesses. Einigkeit besteht darin, dass >75-jährige Männer von einem PSA-Screening nicht profitieren. Ein höheres Alter allein sollte jedoch weder die Diagnostik noch die Behandlung eines Tumorleidens generell ausschließen. Zu berücksichtigen ist aber gerade beim Prostatakarzinom das Risiko von Überdiagnostik und Übertherapie. Die Mehrzahl der älteren Männer leidet an einer Vielzahl von Begleiterkrankungen, welche die Lebenserwartung einschränken, und das konkurrierende Mortalitätsrisiko übersteigt das der Tumorerkrankung um ein Vielfaches. Der behandelnde Urologe und der betroffene Patient sollten deshalb mögliche Auswirkungen einer Diagnosestellung und Therapie auf die Lebensqualität berücksichtigen. Alter, bestehende Komorbiditäten und die individuelle kognitive und körperliche Leistungsfähigkeit stellen neben spezifischen Tumorparametern gute Kriterien für eine individualisierte Behandlungssteuerung dar. Bei gesunden, aktiven >75-jährigen Männern mit "High-risk-PCa-Kriterien" und Patienten mit einer PSA-Verdoppelungszeit < 12Monate sollte eine Therapie in Erwägung gezogen werden. Alle anderen Patienten in diesem Alter profitieren vermutlich nicht von einer Behandlung des PC
Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure
We analyze both experimentally (where possible) and theoretically from
first-principles the dielectric tensor components and crystal structure of five
classes of Pbnm perovskites. All of these materials are believed to be stable
on silicon and are therefore promising candidates for high-K dielectrics. We
also analyze the structure of these materials with various simple models,
decompose the lattice contribution to the dielectric tensor into force constant
matrix eigenmode contributions, explore a peculiar correlation between
structural and dielectric anisotropies in these compounds and give phonon
frequencies and infrared activities of those modes that are infrared-active. We
find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising
candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information:
http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or
http://www.physics.rutgers.edu/~sinisa/highk/supp.pd
Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films
Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser
deposition, of thicknesses down to 40 nm, were studied using infrared
transmission and reflection spectroscopy. The complex dielectric responses of
polar phonon modes, particularly ferroelectric soft mode, in the films were
determined quantitatively. The compressed epitaxial STO films on (100)
La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened
phonon responses, whereas the soft mode in polycrystalline film on (0001)
sapphire substrate shows a strong broadening due to grain boundaries and/or
other inhomogeneities and defects. The stiffened soft mode is responsible for a
much lower static permittivity in the plane of the compressed film than in the
bulk samples.Comment: 11 page
Entanglement swapping between electromagnetic field modes and matter qubits
Scalable quantum networks require the capability to create, store and
distribute entanglement among distant nodes (atoms, trapped ions, charge and
spin qubits built on quantum dots, etc.) by means of photonic channels. We show
how the entanglement between qubits and electromagnetic field modes allows
generation of entangled states of remotely located qubits. We present
analytical calculations of linear entropy and the density matrix for the
entangled qubits for the system described by the Jaynes-Cummings model. We also
discuss the influence of decoherence. The presented scheme is able to drive an
initially separable state of two qubits into an highly entangled state suitable
for quantum information processing
Determinants of legacy effects in pine trees – implications from an irrigation-stop experiment
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree’s responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions
Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams
Spatial phase inhomogeneity at the nano- to microscale is widely observed in
strongly-correlated electron materials. The underlying mechanism and
possibility of artificially controlling the phase inhomogeneity are still open
questions of critical importance for both the phase transition physics and
device applications. Lattice strain has been shown to cause the coexistence of
metallic and insulating phases in the Mott insulator VO2. By continuously
tuning strain over a wide range in single-crystal VO2 micro- and nanobeams,
here we demonstrate the nucleation and manipulation of one-dimensionally
ordered metal-insulator domain arrays along the beams. Mott transition is
achieved in these beams at room temperature by active control of strain. The
ability to engineer phase inhomogeneity with strain lends insight into
correlated electron materials in general, and opens opportunities for designing
and controlling the phase inhomogeneity of correlated electron materials for
micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio
Built-in and induced polarization across LaAlO/SrTiO heterojunctions
Ionic crystals terminated at oppositely charged polar surfaces are inherently
unstable and expected to undergo surface reconstructions to maintain
electrostatic stability. Essentially, an electric field that arises between
oppositely charged atomic planes gives rise to a built-in potential that
diverges with thickness. In ultra thin film form however the polar crystals are
expected to remain stable without necessitating surface reconstructions, yet
the built-in potential has eluded observation. Here we present evidence of a
built-in potential across polar \lao ~thin films grown on \sto ~substrates, a
system well known for the electron gas that forms at the interface. By
performing electron tunneling measurements between the electron gas and a
metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93
meV/\AA. Additionally, capacitance measurements reveal the presence of an
induced dipole moment near the interface in \sto, illuminating a unique
property of \sto ~substrates. We forsee use of the ionic built-in potential as
an additional tuning parameter in both existing and novel device architectures,
especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201
Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.Peer reviewe
Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites
Coaxing correlated materials to the proximity of the insulator–metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La0.5Srn+1−0.5TinO3n+1, is driven by intercalating an intrinsically insulating SrTiO3 unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electron–phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators
- …