36 research outputs found

    Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries

    Get PDF
    Response of an interferometer becomes complicated for gravitational wave shorter than the arm-length of the detector, as nature of wave appears strongly. We have studied how parameter estimation for merging massive black hole binaries are affected by this complicated effect in the case of LISA. It is shown that three dimensional positions of some binaries might be determined much better than the past estimations that use the long wave approximation. For equal mass binaries this improvement is most prominent at \sim 10^5\sol.Comment: 10 pages, 3 figures, to appear in Phys.Rev.

    Large Scale Structure and Supersymmetric Inflation without Fine Tuning

    Full text link
    We explore constraints on the spectral index nn of density fluctuations and the neutrino energy density fraction ΩHDM\Omega_{HDM}, employing data from a variety of large scale observations. The best fits occur for n1n\approx 1 and ΩHDM0.150.30\Omega_{HDM} \approx 0.15 - 0.30, over a range of Hubble constants 406040-60 km s1^{-1} Mpc1^{-1}. We present a new class of inflationary models based on realistic supersymmetric grand unified theories which do not have the usual `fine tuning' problems. The amplitude of primordial density fluctuations, in particular, is found to be proportional to (MX/MP)2(M_X /M_P)^2, where MX(MP)M_X (M_P) denote the GUT (Planck) scale, which is reminiscent of cosmic strings! The spectral index n=0.98n = 0.98, in excellent agreement with the observations provided the dark matter is a mixture of `cold' and `hot' components.Comment: LaTEX, 14 pp. + 1 postscript figure appende

    Formation of a galaxy with a central black hole in the Lemaitre-Tolman model

    Full text link
    We construct two models of the formation a galaxy with a central black hole, starting from a small initial fluctuation at recombination. This is an application of previously developed methods to find a Lemaitre-Tolman model that evolves from a given initial density or velocity profile to a given final density profile. We show that the black hole itself could be either a collapsed object, or a non-vacuum generalisation of a full Schwarzschild-Kruskal-Szekeres wormhole. Particular attention is paid to the black hole's apparent and event horizons.Comment: REVTeX, 22 pages including 11 figures (25 figure files). Replacement has minor changes in response to the referee, and editorial corrections. To appear in PR

    A Far-Ultraviolet View of Starburst Galaxies

    Full text link
    Recent observational and theoretical results on starburst galaxies related to the wavelength regime below 1200 A are discussed. The review covers stars, dust, as well as hot and cold gas. This wavelength region follows trends similar to those seen at longer wavelengths, with several notable exceptions. Even the youngest stellar populations show a turn-over in their spectral energy distributions, and line-blanketing is much more pronounced. Furthermore, the O VI line allows one to probe gas at higher temperatures than possible with lines at longer wavelengths. Molecular hydrogen lines (if detected) provide a glimpse of the cold phase. I cover the crucial wavelength regime below 912 A and the implications of recent attempts to detect the escaping ionizing radiation.Comment: 8 pages, 3 figures, Invited Talk, Starbursts--From 30 Doradus to Lyman-Break Galaxies, ed. R. de Grijs & R. M. Gonzalez Delgado (Dordrecht: Kluwer

    Evolution of supermassive black holes

    Full text link
    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked for in the early Universe, as very luminous quasars are detected up to redshift higher than z=6. These black holes evolve then in a hierarchical fashion, following the merger hierarchy of their host halos. Accretion of gas, traced by quasar activity, plays a fundamental role in determining the two parameters defining a black hole: mass and spin. A particularly intriguing epoch is the initial phase of SMBH growth. It is very challenging to meet the observational constraints at z=6 if BHs are not fed at very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy

    Formation and Evolution of Supermassive Black Holes

    Full text link
    The correlation between the mass of supermassive black holes in galaxy nuclei and the mass of the galaxy spheroids or bulges (or more precisely their central velocity dispersion), suggests a common formation scenario for galaxies and their central black holes. The growth of bulges and black holes can commonly proceed through external gas accretion or hierarchical mergers, and are both related to starbursts. Internal dynamical processes control and regulate the rate of mass accretion. Self-regulation and feedback are the key of the correlation. It is possible that the growth of one component, either BH or bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1 objects. The formation of supermassive black holes can begin early in the universe, from the collapse of Population III, and then through gas accretion. The active black holes can then play a significant role in the re-ionization of the universe. The nuclear activity is now frequently invoked as a feedback to star formation in galaxies, and even more spectacularly in cooling flows. The growth of SMBH is certainly there self-regulated. SMBHs perturb their local environment, and the mergers of binary SMBHs help to heat and destroy central stellar cusps. The interpretation of the X-ray background yields important constraints on the history of AGN activity and obscuration, and the census of AGN at low and at high redshifts reveals the downsizing effect, already observed for star formation. History appears quite different for bright QSO and low-luminosity AGN: the first grow rapidly at high z, and their number density decreases then sharply, while the density of low-luminosity objects peaks more recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update

    Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters

    Full text link
    Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and Space Science; fixed typos and a quote in Sec.

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Galaxy bulges and their massive black holes: a review

    Full text link
    With references to both key and oft-forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centres of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.Comment: Invited (15 Feb. 2014) review article (submitted 16 Nov. 2014). 590 references, 9 figures, 25 pages in emulateApJ format. To appear in "Galactic Bulges", E. Laurikainen, R.F. Peletier, and D.A. Gadotti (eds.), Springer Publishin
    corecore