58 research outputs found
Novel Paraconiothyrium species on stone fruit trees and other woody hosts
Coniothyrium-like fungi are common wood and soil inhabitants and hyperparasites on other fungi. They belong to different fungal genera within the Pleosporales. Several isolates were obtained on wood of different Prunus species (plum, peach and nectarine) from South Africa, on Actinidia species from Italy and on Laurus nobilis from Turkey. Morphological and cultural characteristics as well as DNA sequence data (5.8S nrDNA, ITS1, ITS2, partial SSU nrDNA) were used to characterise them. The isolates belonged to three species of the recently established genus Paraconiothyrium. This is the first report of Paraconiothyrium brasiliense on Prunus spp. from South Africa. Two new species are described, namely Paraconiothyrium variabile sp. nov. on Prunus persica and Prunus salicina from South Africa, on Actinidia spp. from Italy and on Laurus nobilis from Turkey, and Paraconiothyrium africanum sp. nov. on Prunus persica from South Africa. Although other known species of Paraconiothyrium commonly produce aseptate conidia, those of P. africanum and P. hawaiiense comb. nov. are predominantly two-celled
Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane
Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and showed that these proteins are present together in fractions with RNA-dependent RNA polymerase activity. A deletion analysis in the yeast two-hybrid system showed that in P1 the C-terminal sequence of 509 amino acids with the helicase domain was necessary for the interaction. In P2, the sequence of the N-terminal 241 aa was required for the interaction. In infected protoplasts, P1 and P2 colocalized at a membrane structure that was identified as the tonoplast (i.e., the membrane that surrounds the vacuoles) by using a tonoplast intrinsic protein as a marker in immunofluorescence studies. While P1 was exclusively localized on the tonoplast, P2 was found both at the tonoplast and at other locations in the cell. As Brome mosaic virus replication complexes have been found to be associated with the endoplasmic reticulum (M. A. Restrepo-Hartwig and P. Ahlquist, J. Virol. 70:8908-8916, 1996), viruses in the family Bromoviridae apparently select different cellular membranes for the assembly of their replication complexes
The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death
BACKGROUND: Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. PRINCIPLE FINDINGS: We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. CONCLUSIONS: This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.Davide Bulgarelli, Chiara Biselli, Nicholas C. Collins, Gabriella Consonni, Antonio M. Stanca, Paul Schulze-Lefert and Giampiero Val
- …