3,241 research outputs found

    Effects of atmosphere, wind, and aircraft maneuvers on sonic boom signatures

    Get PDF
    Atmosphere, wind, and aircraft maneuver effects on sonic boom signature

    Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    Get PDF
    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles

    Technology requirements for advanced earth-orbital transportation systems: Summary report

    Get PDF
    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-state-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability beginning in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. The technical and economic feasibility of this class of SSTO concepts were evaluated as well as the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs

    Line-vortex theory for calculation of supersonic downwash

    Get PDF
    The perturbation field induced by a line vortex in a supersonic stream and the downwash behind a supersonic lifting surface are examined to establish approximate methods for determining the downwash behind supersonic wings. Lifting-lines methods are presented for calculating supersonic downwash. A bent lifting-line method is proposed for computing the downwash field behind swept wings. When applied to triangular wings with subsonic leading edges, this method gives results that, in general, are in good agreement with the exact linearized solution. An unbent lifting-line method (horseshoe-vortex system) is proposed for unswept wings. This method is applied to determine downwash behind rectangular wings with aspect ratios of 2 and 4. Excellent agreement with exact linearized theory is obtained for both aspect ratios by placing the lifting line at the 1/2-chord point. The use of lifting-lines therefore appears promising for obtaining estimates of the downwash behind supersonic wings

    Downwash in Vortex Region Behind Rectangular Half-wing at Mach Number 1.91

    Get PDF
    Results of an experimental investigation to determine downwash and wake characteristics in region of trailing vortex system behind a rectangular half-wing at Mach number 1.91 are presented. The wing had a 5-percent thick symmetric diamond cross section beveled to a knife edge at the tip. At small angles of attack, downwash angles were in close agreement with predictions of linearized theory based on the assumption of an undistorted vortex sheet. At higher angles of attack, the flow was greatly influenced by the rolling up of the vortex sheet
    corecore