5 research outputs found
Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 r4ra randomized trial
Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5–20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n = 164), patients with low/absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocilizumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatment–response phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients
Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing
BACKGROUND: The plasma total and low-density lipoprotein-cholesterol (LDL-C) levels that are used as diagnostic criteria for familial hypercholesterolaemia (FH) probands in the general population are too stringent for use in relatives, given the higher prior probability of a first-degree relative being FH (50% vs. 1/500). Our objective was therefore to develop more appropriate LDL-C cutoffs to identify "affected" first-degree relatives found by cascade testing, to test their accuracy and utility in case identification, and to compare them with the published "Make early diagnosis to prevent disease" (MEDPED) cutoffs from the US. METHODS: Using a large, anonymised sample of genetically tested first-degree relatives of Netherlands FH probands (mutation carriers/non-carriers, n=825/2,469), age- and gender-specific LDL-C diagnostic cutoffs for first-degree relatives were constructed. These were used to test similar data from Denmark (n=160/161) and Norway (n=374/742). RESULTS: Gender-specific LDL-C diagnostic cutoffs were established for six different age groups, which achieved an overall accuracy (measured as Youden's index) of 0.53 in the Netherlands data, and performed significantly better amongst younger ( <25 years) compared to older first-degree relatives (0.68 vs. 0.42 Youden's index, p <0.001). Compared with the Netherlands data, age- and gender-adjusted mean LDL-C levels were significantly higher (approximately 0.5 mmol/L) in the Denmark and Norway subjects for both mutation carriers and non-carriers. After adjusting for this difference, the LDL-C cut-offs showed a similar accuracy in identifying mutation carriers from Denmark (81%, range 78%-86%) and Norway (84%, range 82%-86%). Although the MEDPED cutoffs performed significantly worse than these for the Netherlands data (p <0.001), they performed equally well in overall accuracy for the Norwegian and Danish data, although the LDL-C cutoffs had a significantly higher sensitivity but lower specificity for all three countries. CONCLUSIONS: The cutoffs developed here are designed to give the greatest overall accuracy when testing relatives of FH patients in the absence of a genetic diagnosis. They have a more balanced specificity and sensitivity than the MEDPED cutoffs that are designed to achieve higher specificity, which is more appropriate for cascade testing purposes. The data suggest that country-specific LDL-C cutoffs may lead to greater accuracy for identifying FH patients, but should be used with caution and only when a genetic diagnosis (DNA) is not availabl
Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial.
BACKGROUND: Although targeted biological treatments have transformed the outlook for patients with rheumatoid arthritis, 40% of patients show poor clinical response, which is mechanistically still unexplained. Because more than 50% of patients with rheumatoid arthritis have low or absent CD20 B cells-the target for rituximab-in the main disease tissue (joint synovium), we hypothesised that, in these patients, the IL-6 receptor inhibitor tocilizumab would be more effective. The aim of this trial was to compare the effect of tocilizumab with rituximab in patients with rheumatoid arthritis who had an inadequate response to anti-tumour necrosis factor (TNF) stratified for synovial B-cell status. METHODS: This study was a 48-week, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial (rituximab vs tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis; R4RA) done in 19 centres across five European countries (the UK, Belgium, Italy, Portugal, and Spain). Patients aged 18 years or older who fulfilled the 2010 American College of Rheumatology and European League Against Rheumatism classification criteria for rheumatoid arthritis and were eligible for treatment with rituximab therapy according to UK National Institute for Health and Care Excellence guidelines were eligible for inclusion in the trial. To inform balanced stratification, following a baseline synovial biopsy, patients were classified histologically as B-cell poor or rich. Patients were then randomly assigned (1:1) centrally in block sizes of six and four to receive two 1000 mg rituximab infusions at an interval of 2 weeks (rituximab group) or 8 mg/kg tocilizumab infusions at 4-week intervals (tocilizumab group). To enhance the accuracy of the stratification of B-cell poor and B-cell rich patients, baseline synovial biopsies from all participants were subjected to RNA sequencing and reclassified by B-cell molecular signature. The study was powered to test the superiority of tocilizumab over rituximab in the B-cell poor population at 16 weeks. The primary endpoint was defined as a 50% improvement in Clinical Disease Activity Index (CDAI50%) from baseline. The trial is registered on the ISRCTN database, ISRCTN97443826, and EudraCT, 2012-002535-28. FINDINGS: Between Feb 28, 2013, and Jan 17, 2019, 164 patients were classified histologically and were randomly assigned to the rituximab group (83 [51%]) or the tocilizumab group (81 [49%]). In patients histologically classified as B-cell poor, there was no statistically significant difference in CDAI50% between the rituximab group (17 [45%] of 38 patients) and the tocilizumab group (23 [56%] of 41 patients; difference 11% [95% CI -11 to 33], p=0·31). However, in the synovial biopsies classified as B-cell poor with RNA sequencing the tocilizumab group had a significantly higher response rate compared with the rituximab group for CDAI50% (rituximab group 12 [36%] of 33 patients vs tocilizumab group 20 [63%] of 32 patients; difference 26% [2 to 50], p=0·035). Occurrence of adverse events (rituximab group 76 [70%] of 108 patients vs tocilizumab group 94 [80%] of 117 patients; difference 10% [-1 to 21) and serious adverse events (rituximab group 8 [7%] of 108 vs tocilizumab group 12 [10%] of 117; difference 3% [-5 to 10]) were not significantly different between treatment groups. INTERPRETATION: The results suggest that RNA sequencing-based stratification of rheumatoid arthritis synovial tissue showed stronger associations with clinical responses compared with histopathological classification. Additionally, for patients with low or absent B-cell lineage expression signature in synovial tissue tocilizumab is more effective than rituximab. Replication of the results and validation of the RNA sequencing-based classification in independent cohorts is required before making treatment recommendations for clinical practice. FUNDING: Efficacy and Mechanism Evaluation programme from the UK National Institute for Health Research