39 research outputs found
Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera
The measurement of photon-number statistics of fields composed of photon
pairs, generated in spontaneous parametric down-conversion and detected by an
intensified CCD camera is described. Final quantum detection efficiencies,
electronic noises, finite numbers of detector pixels, transverse intensity
spatial profiles of the detected beams as well as losses of single photons from
a pair are taken into account in a developed general theory of photon-number
detection. The measured data provided by an iCCD camera with single-photon
detection sensitivity are analyzed along the developed theory. Joint
signal-idler photon-number distributions are recovered using the reconstruction
method based on the principle of maximum likelihood. The range of applicability
of the method is discussed. The reconstructed joint signal-idler photon-number
distribution is compared with that obtained by a method that uses superposition
of signal and noise and minimizes photoelectron entropy. Statistics of the
reconstructed fields are identified to be multi-mode Gaussian. Elements of the
measured as well as the reconstructed joint signal-idler photon-number
distributions violate classical inequalities. Sub-shot-noise correlations in
the difference of the signal and idler photon numbers as well as partial
suppression of odd elements in the distribution of the sum of signal and idler
photon numbers are observed.Comment: 14 pages, 14 figure
Surface spontaneous parametric down-conversion
Surface spontaneous parametric down-conversion is predicted as a consequence
of continuity requirements for electric- and magnetic-field amplitudes at a
discontinuity of chi2 nonlinearity. A generalization of the usual two-photon
spectral amplitude is suggested to describe this effect. Examples of nonlinear
layered structures and periodically-poled nonlinear crystals show that surface
contributions to spontaneous down-conversion can be important.Comment: 4 pages, 3 figure
Emission of photon pairs at discontinuities of nonlinearity in spontaneous parametric down-conversion
In order to fulfil the continuity requirements for electric- and
magnetic-field amplitudes at discontinuities of chi2 nonlinearity additional
photon pairs have to be emitted in the area of discontinuity. Generalized
two-photon spectral amplitudes can be used to describe properties of photon
pairs generated in this process that we call surface spontaneous parametric
down-conversion. The spectral structure of such photon pairs is similar to that
derived for photon pairs generated in the volume. Surface and volume
contributions to spontaneous down-conversion can be comparable as an example of
nonlinear layered structures shows.Comment: 11 pages, 8 figure
Spatial and spectral properties of the pulsed second-harmonic generation in a PP-KTP waveguide
Spatial and spectral properties of the pulsed second harmonic generation in a
periodically-poled KTP waveguide exploiting simultaneously the first, second,
and third harmonics of periodic nonlinear modulation are analyzed. Experimental
results are interpreted using a model based on finite elements method.
Correlations between spatial and spectral properties of the fundamental and
second-harmonic fields are revealed. Individual nonlinear processes can be
exploited combining spatial and spectral filtering. Also the influence of
waveguide parameters to the second-harmonic spectra is addressed.Comment: 13 pages, 8 figure
Multiple-photon resolving fiber-loop detector
We show first reconstructions of the photon-number distribution obtained with
a multi-channel fiber-loop detector. Apart from analyzing the statistics of
light pulses this device can serve as a sophisticated postselection device for
experiments in quantum optics and quantum information. We quantify its
efficiency by means of the Fisher information and compare it to the efficiency
of the ideal photodetector.Comment: 5 pages, 6 figure
Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation
Two-mode nonlinear interaction (second-harmonic and second-subharmonic
generation) in a planar waveguide with a small periodic corrugation at the
surface is studied. Scattering of the interacting fields on the corrugation
leads to constructive interference that enhances the nonlinear process provided
that all the interactions are phase matched. Conditions for the overall phase
matching are found. Compared with a perfectly quasi-phase-matched waveguide,
better values of squeezing as well as higher intensities are reached under
these conditions. Procedure for finding optimum values of parameters for
squeezed-light generation is described.Comment: 14 pages, 14 figure
Spectral structure and decompositions of optical states, and their applications
We discuss the spectral structure and decomposition of multi-photon states.
Ordinarily `multi-photon states' and `Fock states' are regarded as synonymous.
However, when the spectral degrees of freedom are included this is not the
case, and the class of `multi-photon' states is much broader than the class of
`Fock' states. We discuss the criteria for a state to be considered a Fock
state. We then address the decomposition of general multi-photon states into
bases of orthogonal eigenmodes, building on existing multi-mode theory, and
introduce an occupation number representation that provides an elegant
description of such states that in many situations simplifies calculations.
Finally we apply this technique to several example situations, which are highly
relevant for state of the art experiments. These include Hong-Ou-Mandel
interference, spectral filtering, finite bandwidth photo-detection, homodyne
detection and the conditional preparation of Schr\"odinger Kitten and Fock
states. Our techniques allow for very simple descriptions of each of these
examples.Comment: 12 page