1,109 research outputs found

    73. The Textile Patterns of the Sea-Dayaks

    Get PDF
    n/

    Method of Solubilizing Carbon Nanotubes in Organic Solutions

    Get PDF
    Carbon nanotubes are dissolved in organic solutions by attaching an aliphatic carbon chain (which may contain aromatic residues) so as to render the carbon nanotubes soluble

    Method of Solubilizing Unshortened Carbon Nanotubes in Organic Solutions

    Get PDF
    Naked carbon nanotubes are dissolved in organic solutions by terminating the nanotubes with carboxylic acid groups and attaching an aliphatic carbon chain so as to render the carbon nanotubes soluble

    Anisotropy of the Mobility of Pentacene from Frustration

    Get PDF
    The bandstructure of pentacene is calculated using first-principles density functional theory. A large anisotropy of the hole and electron effective masses within the molecular planes is found. The band dispersion of the HOMO and the LUMO is analyzed with the help of a tight-binding fit. The anisotropy is shown to be intimately related to the herringbone structure.Comment: Accepted for publication in Synthetic Metal

    Electronic Structure of Superconducting Ba6c60

    Full text link
    We report the results of first-principles electronic-structure calculations for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound shows strong Ba-C hybridization in the valence and conduction regions, mixed covalent/ionic bonding character, partial charge transfer, and insulating zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with REVTE

    Magnetic Properties of Undoped C60C_{60}

    Full text link
    The Heisenberg antiferromagnet, which arises from the large UU Hubbard model, is investigated on the C60C_{60} molecule and other fullerenes. The connectivity of C60C_{60} leads to an exotic classical ground state with nontrivial topology. We argue that there is no phase transition in the Hubbard model as a function of U/tU/t, and thus the large UU solution is relevant for the physical case of intermediate coupling. The system undergoes a first order metamagnetic phase transition. We also consider the S=1/2 case using perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included

    Room-temperature Magnetic Ordering in Functionalized Graphene

    Get PDF
    Despite theoretical predictions, the question of room-temperature magnetic order in graphene must be conclusively resolved before graphene can fully achieve its potential as a spintronic medium. Through scanning tunneling microscopy (STM) and point I-V measurements, the current study reveals that unlike pristine samples, graphene nanostructures, when functionalized with aryl radicals, can sustain magnetic order. STM images show 1-D and 2-D periodic super-lattices originating from the functionalization of a single sub-lattice of the bipartite graphene structure. Field-dependent super-lattices in 3-nm wide “zigzag” nanoribbons indicate local moments with parallel and anti-parallel ordering along and across the edges, respectively. Anti-parallel ordering is observed in 2-D segments with sizes of over 20 nm. The field dependence of STM images and point I-V curves indicates a spin polarized local density of states (LDOS), an out-of-plane anisotropy field of less than 10 Oe, and an exchange coupling field of 100 Oe at room temperature

    Electric-Field-Induced Mott Insulating States in Organic Field-Effect Transistors

    Get PDF
    We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modelled by a Hubbard Hamiltonian similar to that used for the kappa-(BEDT-TTF)(2)X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion, U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.Comment: 9 pages, 7 figure

    Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus.

    Get PDF
    High titer, class-switched autoantibodies are a hallmark of systemic lupus erythematosus (SLE). Dysregulation of the interferon (IFN) pathway is observed in individuals with active SLE, although the association of specific autoantibodies with chemokine score, a combined measurement of three IFN-regulated chemokines, is not known. To identify autoantibodies associated with chemokine score, we developed giant magnetoresistive (GMR) biosensor microarrays, which allow the parallel measurement of multiple serum antibodies to autoantigens and peptides. We used the microarrays to analyze serum samples from SLE patients and found individuals with high chemokine scores had significantly greater reactivity to 13 autoantigens than individuals with low chemokine scores. Our findings demonstrate that multiple autoantibodies, including antibodies to U1-70K and modified histone H2B tails, are associated with IFN dysregulation in SLE. Further, they show the microarrays are capable of identifying autoantibodies associated with relevant clinical manifestations of SLE, with potential for use as biomarkers in clinical practice

    Important role of alkali atoms in A4C60

    Full text link
    We show that hopping via the alkali atoms plays an important role for the t1u band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is broadened by more than 40 % by the presence of the alkali atoms. The difference between A4C60 and A3C60 is in particular due to the less symmetric location of the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
    • …
    corecore