124 research outputs found

    Energy harvesting using porous piezoelectric beam with impacts

    Get PDF
    An analytical model of impact energy harvester consisting of a cantilever beam with integrated piezoelectric patches and a ball is developed in this paper. The material chosen to extract the energy is porous PZT, a composite material made of two phases: air and PZT. This material offers good control of the capacitance and the stiffness of the resultant composite material and expands the design space for the harvester. The cantilever beam is modelled using a single degree-of-freedom approximation, and a load resistor is used to represent the external circuit. The response of the energy harvester and the power output is obtained for harmonic base excitation, and the effect of excitation frequency, boundary distance, load resistance and porosity of the PZT material. The results highlight the potential for the impact harvester and motivate further studies to optimize the harvester

    Structure of Native Lens Connexin 46/50 Intercellular Channels by Cryo-EM

    Get PDF
    Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects

    Porous piezoelectric materials for energy harvesting

    Get PDF
    In this paper, we assess the energy harvesting capabilities of porous piezoelectric material under harmonic excitation and investigate the advantages of functionally grading the air inclusions. A cantilever beam energy harvester with base excitation is used to demonstrate the effects of porosity on the power generated. A homogenization step using the analytical Mori-Tanaka approach is performed initially to reduce the computational requirements. This homogenization will estimate the material properties for different levels of porosity. An Euler-Bernoulli beam model is used to efficiently estimate the power generated for a piezoelectric sensor with uniform properties. A 2D finite element model is then developed to verify the beam model; this detailed model may be used to analyze harvesters where the porosity varies through the thickness or along the length of the beams. An optimization is performed, focusing on the impact of the percentage of inclusions on the energy harvesting efficienc

    The effect of cryogenic machining of S2 glass fibre composite on the hole form and dimensional tolerances

    Get PDF
    S2 glass fibre reinforced epoxy composites are widely used in aeronautical applications owing to their excellent strength to weight ratio. Drilling glass fibres can be cumbersome due to their abrasive nature and poor thermal conductivity. Moreover, the use of conventional coolants is not desirable due to contamination and additional costs for cleaning the machine part. An alternative is to use environmentally friendly coolants such as liquid nitrogen (LN2) which have been previously employed in machining metals and composites. The current study investigates the effect of drilling S2 glass fibre composite in a bath of LN2. The study aims to evaluate the effect of spindle speed, feed rate and the presence of cryogenic cooling on the form and dimensional tolerances of the hole (hole size, circularity, cylindricity and perpendicularity). Design of experiments and analysis of variance (ANOVA) were used to determine the contribution of the input parameters on the analysed hole quality metrics. Results indicated that drilling S2 glass fibre in a cryogenic bath increased hole size significantly beyond the nominal hole diameter. The hole circularity and cylindricity were reduced compared to holes drilled under dry condition under all cutting parameters due to enhanced thermal stability during the drilling process. The current study aims to provide the scientific and industrial communities with the necessary knowledge on whether cryogenic bath cooling strategy provides better hole quality output compared to dry drilling and other cryogenic cooling strategies which were previously reported in the open literature

    Aurora-A Mitotic Kinase Induces Endocrine Resistance through Down-Regulation of ERα Expression in Initially ERα+ Breast Cancer Cells

    Get PDF
    Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the ‘cross-talk’ between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/− cancer cells from the bulk tumor with consequent benefits for breast cancer patients

    NOTCH3 Expression Is Linked to Breast Cancer Seeding and Distant Metastasis

    Get PDF
    Background: Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. Methods: We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7Raf-1) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database. Results: In this study, we identified an association between NOTCH3 expression and development of metastases in ERα+ and TNBC models. ERα+ breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44low/CD24high/ERαhigh phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens. Conclusions: These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore