794 research outputs found

    Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates

    Full text link
    We consider the lightly doped cuprates Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} and La2x_{2-x}Srx_xCuO4_4 (with x=0.02x=0.02,0.04), where the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe (or, more generically, charge-density wave) phase, which sets in at higher doping. We phenomenologically assume a quantum critical character for the longitudinal and transverse nematic, and for the charge-ordering fluctuations, and investigate the effects of these fluctuations in Raman spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well for the anomalous Raman absorption observed in these systems in the B2gB_{2g} channel, while the absence of such effect in the B1gB_{1g} channel may be due to the overall suppression of Raman response at low frequencies, associated with the pseudogap. While in Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} the low-frequency lineshape is fully accounted by longitudinal nematic collective modes alone, in La2x_{2-x}Srx_xCuO4_4 also charge-ordering modes with finite characteristic wavevector are needed to reproduce the shoulders observed in the Raman response. This different involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state at very low doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201

    Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order

    Full text link
    The Nernst effect has recently proven a sensitive probe for detecting unusual normal state properties of unconventional superconductors. In particular, it may sensitively detect Fermi surface reconstructions which are connected to a charge or spin density wave (SDW) ordered state, and even fluctuating forms of such a state. Here we summarize recent results for the Nernst effect of the iron pnictide superconductor LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, whose ground state evolves upon doping from an itinerant SDW to a superconducting state, and the cuprate superconductor La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 which exhibits static stripe order as a ground state competing with the superconductivity. In LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, the SDW order leads to a huge Nernst response, which allows to detect even fluctuating SDW precursors at superconducting doping levels where long range SDW order is suppressed. This is in contrast to the impact of stripe order on the normal state Nernst effect in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4. Here, though signatures of the stripe order are detectable in the temperature dependence of the Nernst coefficient, its overall temperature dependence is very similar to that of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, where stripe order is absent. The anomalies which are induced by the stripe order are very subtle and the enhancement of the Nernst response due to static stripe order in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 as compared to that of the pseudogap phase in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO Science for Peace and Security Series B: Physics and Biophysics, (Springer Science+Business Media B.V. 2012

    A study of the superconducting gap in RNi2_2B2_2C (R = Y, Lu) single crystals by inelastic light scattering

    Full text link
    Superconductivity-induced changes in the electronic Raman scattering response were observed for the RNi2_2B2_2C (R = Y, Lu) system in different scattering geometries. In the superconducting state, 2Δ\Delta-like peaks were observed in A1g_{1g}, B1g_{1g}, and B2g_{2g} spectra from single crystals. The peaks in A1g_{1g} and B2g_{2g} symmetries are significantly sharper and stronger than the peak in B1g_{1g} symmetry. The temperature dependence of the frequencies of the 2Δ\Delta-like peaks shows typical BCS-type behavior, but the apparent values of the 2Δ2\Delta gap are strongly anisotropic for both systems. In addition, for both YNi2_2B2_2C and LuNi2_2B2_2C systems, there exists reproducible scattering strength below the 2Δ2\Delta gap which is roughly linear to the frequency in B1g_{1g} and B2g_{2g} symmetries. This discovery of scattering below the gap in non-magnetic borocarbide superconductors, which are thought to be conventional BCS-type superconductors, is a challenge for current understanding of superconductivity in this system.Comment: Added text, changed a figure, and added references. Will appear in Phys. Rev.

    Electromagnetic Response and Approximate SO(5) Symmetry in High-Tc Superconductors

    Full text link
    It has been proposed that the effective Hamiltonian describing high T_c superconductivity in cuprate materials has an approximate SO(5) symmetry relating the superconducting (SC) and antiferromagnetic (AF) phases of these systems. We show that robust consequences of this proposal are potentially large optical conductivities and Raman scattering rates in the AF phase, due to the electromagnetic response of the doubly-charged pseudo Goldstone bosons which must exist there. This provides strong constraints on the properties of the bosons, such as their mass gap and velocity.Comment: 4 pages, 3 figure
    corecore