54 research outputs found

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Characterization of a Tc1-like transposable element in zebrafish (Danio rerio)

    No full text
    We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 bp long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 bp inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping

    Translating Sleeping Beauty transposition into cellular therapies: Victories and challenges

    No full text
    Recent results confirm that long-term expression of therapeutic transgenes can be achieved by using a transposon-based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon-based hyperactive vector (SB100X), is able to address the basic problem of non-viral approaches - that is, low efficiency of stable gene transfer. The combination of transposon-based non-viral gene transfer with the latest improvements of non-viral delivery techniques could provide a long-term therapeutic effect without compromising biosafety. The new challenges of pre-clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target-selected transgene integration into genomic "safe harbors." The first clinical application of the SB system will help to validate the safety of this approach
    corecore