132 research outputs found

    Design of an axisymmetric primitive equation tropical cyclone model

    Get PDF
    December 1976.Includes bibliographical references (pages 67-69).Sponsored by the Global Atmospheric Research Program, Climate Dynamics Research Section, National Science Foundation DES 74-11438.Sponsored by the Global Atmospheric Research Program, Climate Dynamics Research Section, National Science Foundation ATM 76-09370.Sponsored by the Global Atmospheric Research Program, Climate Dynamics Research Section, National Science Foundation OCD 74-21678

    Role of convective-scale processes in tropical cyclone development, The

    Get PDF
    December, 1980.Includes bibliographical references.Presents an eighteen-level axisymmetric primitive equation tropical cyclone model incorporating the Arakawa-Schubert (1974) spectral cumulus parameterization.Sponsored by the National Science Foundation under grant ATM-7808125 and the Office of Naval Research N00014-79-C-0793

    Geostrophic adjustment in an axisymmetric vortex

    Get PDF
    November 1979.Includes bibliographical references.Supported by Global Atmospheric Research Program, National Science Foundation, and the GATE Project Office, NOAA ATM-7808125

    Synthesis-Dependent First-Order Raman Scattering in SrTiO 3 Nanocubes at Room Temperature

    Get PDF
    Raman spectroscopy was used to demonstrate that the lattice dynamics of SrTiO 3 (STO) nanoparticles strongly depends on their microstructure, which is in turn determined by the synthetic approach employed. First-order Raman modes are observed at room temperature in STO single-crystalline nanocubes with average edge lengths of 60 and 120 nm, obtained via sol-precipitation coupled with hydrothermal synthesis and a molten salt procedure, respectively. First-order Raman scattering arises from local loss of inversion symmetry caused by surface frozen dipoles, oxygen vacancies, and impurities incorporated into the host lattice. The presence of polar domains is suggested by the pronounced Fano asymmetry of the peak corresponding to the TO2 polar phonon, which does not vanish at room temperature. These noncentrosymmetric domains will likely influence the dielectric response of these nanoparticles

    Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement : systematic review and meta-analysis

    Get PDF
    Background: Several types of Magnetic resonance imaging (MRI) are commonly used in imaging of femoroacetabular impingement (FAI), however till now there are no clear protocols and recommendations for each type. The aim of this meta-analysis is to detect the accuracy of conventional magnetic resonance imaging (cMRI), direct magnetic resonance arthrography (dMRA) and indirect magnetic resonance arthrography (iMRA) in the diagnosis of chondral and labral lesions in femoroacetabular impingement (FAI). Methods: A literature search was finalized on the 17th of May 2016 to collect all studies identifying the accuracy of cMRI, dMRA and iMRA in diagnosing chondral and labral lesions associated with FAI using surgical results (arthroscopic or open) as a reference test. Pooled sensitivity and specificity with 95% confidence intervals using a random-effects meta-analysis for MRI, dMRA and iMRA were calculated also area under receiver operating characteristic (ROC) curve (AUC) was retrieved whenever possible where AUC is equivocal to diagnostic accuracy. Results: The search yielded 192 publications which were reviewed according inclusion and exclusion criteria then 21 studies fulfilled the eligibility criteria for the qualitative analysis with a total number of 828 cases, lastly 12 studies were included in the quantitative meta-analysis. Meta-analysis showed that as regard labral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.864, 0.833 and 0.88 and for dMRA were 0.91, 0.58 and 0.92. While in chondral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.76, 0.72 and 0.75 and for dMRA were 0.75, 0.79 and 0.83, while for iMRA were sensitivity of 0.722 and specificity of 0.917. Conclusions: The present meta-analysis showed that the diagnostic test accuracy was superior for dMRA when compared with cMRI for detection of labral and chondral lesions. The diagnostic test accuracy was superior for labral lesions when compared with chondral lesions in both cMRI and dMRA. Promising results are obtained concerning iMRA but further studies still needed to fully assess its diagnostic accuracy

    High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Get PDF
    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of fuel

    Case report: The management of advanced oral cancer in a Jehovah's Witness using the Ultracision Harmonic Scalpel

    Get PDF
    We present the first case of a head and neck oncological procedure accomplished in a Jehovah's Witness using the Ultracision Harmonic Scalpel (Ethicon, Cincinnati, OH). Jehovah's Witnesses present a serious challenge to the head and neck cancer surgeon due to their refusal to accept transfusion of any blood products. However, our experience reinforces the view that surgical management of head and neck cancer is possible in these patients. We show the Harmonic Scalpel, an ultrasonic tissue dissector, to be a useful surgical tool in obviating the need for blood transfusion. Preoperative optimisation, intra-operative surgical and anaesthetic techniques are also fully discussed

    Distribution, variability and sources of tropospheric ozone over south China in spring: intensive ozonesonde measurements at five locations and modeling analysis

    Get PDF
    We examine the characteristics of the spatial distribution and variability of tropospheric ozone (O3) by analysis of 93 ozonesonde profiles obtained at five stations over south China (18–30 N) during a field campaign in April–May 2004. We use a global 3-D chemical transport model (GEOS-Chem) to interpret these characteristics and to quantify the sources of tropospheric O3 over south China during this period. The observed tropospheric O3 mixing ratios showed strong spatiotemporal variability due to a complex interplay of various dynamical and chemical processes. A prominent feature in the upper and middle troposphere (UT/MT) was the frequent occurrence of high O3 mixing ratios shown as tongues extending down from the lower stratosphere or as isolated layers at all stations. The model largely captured the observed pattern of day-to-day variability in tropospheric O3 mixing ratios at all stations, but often underestimated those tongues or isolated layers of O3 enhancements observed in the UT/MT, especially at low-latitude stations. We found that tropospheric O3 along the southeast China coast was mainly produced within Asia. Lightning NOx emissions (over South Asia and equatorial Africa) and/or stratospheric influences were responsible for major events of high O3 observed in the UT/MT at all stations. Underestimated contributions of these sources likely led to the model’s underestimate in the low-latitude UT/MT O3. This study emphasizes the need for improved understanding of lightning NOx emissions and stratospheric influences over the Eurasian and African continents and for better representation of these processes in current global models
    • 

    corecore