47 research outputs found

    The Role of Systems Biology in Deciphering Asthma Heterogeneity

    Get PDF
    Asthma is one of the most common and lifelong and chronic inflammatory diseases characterized by inflammation, bronchial hyperresponsiveness, and airway obstruction episodes. It is a heterogeneous disease of varying and overlapping phenotypes with many confounding factors playing a role in disease susceptibility and management. Such multifactorial disorders will benefit from using systems biology as a strategy to elucidate molecular insights from complex, quantitative, massive clinical, and biological data that will help to understand the underlying disease mechanism, early detection, and treatment planning. Systems biology is an approach that uses the comprehensive understanding of living systems through bioinformatics, mathematical, and computational techniques to model diverse high-throughput molecular, cellular, and the physiologic profiling of healthy and diseased populations to define biological processes. The use of systems biology has helped understand and enrich our knowledge of asthma heterogeneity and molecular basis; however, such methods have their limitations. The translational benefits of these studies are few, and it is recommended to reanalyze the different studies and omics in conjugation with one another which may help understand the reasons for this variation and help overcome the limitations of understanding the heterogeneity in asthma pathology. In this review, we aim to show the different factors that play a role in asthma heterogeneity and how systems biology may aid in understanding and deciphering the molecular basis of asthma

    Understanding the Role of Innate Immune Cells and Identifying Genes in Breast Cancer Microenvironment

    Get PDF
    The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy

    Molecular examination of differentially expressed genes in the brains of experimental autoimmune encephalomyelitis mice post herceptin treatment

    Get PDF
    Objective: Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. Methods: We used in-silico analysis of publicly available data, qRT-PCR, and immunohisto-chemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. Results: We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. Conclusion: These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.</p

    Molecular examination of differentially expressed genes in the brains of experimental autoimmune encephalomyelitis mice post herceptin treatment

    Get PDF
    Objective: Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. Methods: We used in-silico analysis of publicly available data, qRT-PCR, and immunohisto-chemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. Results: We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. Conclusion: These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.</p

    Gene expression study of pathogenic hemolysin producing E. coli isolated from cattle by using reverse transcription real-time PCR

    Get PDF
    The main goal of current study is an investigation of detection and expression of hemolysin toxin in E.coli isolates in clinical veterinary infection cases included Mastitis milk, Abortion samples and diarrhea samples from cattle in Al-Diwaniyah city by using real time-polymerase chain reaction technique. Total samples that used in this study are (24) isolates, included (9) isolates from mastitis cases, (5) isolates from abortion cases, and (10) isolates have taken from Diarrhea cases in cattle. The total prevalence of hemolysin in E.coli isolates is 18/24 (75%), where the percentage of occurrence of hemolysin production E.coli isolates by using real-time PCR was 7/9 (77%), 5/5 (100%), and 6/10 (60%) in Mastitis milk, Abortion and Diarrhea cases in cattle respectively. In concluding, production of hemolysin toxin by E.coli isolates have contrast activity depend on the type of sample; the study found the abortion isolates have high gene expression followed by diarrhoea isolates, then milk isolates

    Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus

    Get PDF
    Dysregulated expression of MicroRNAs (miRNAs) plays substantial role in the initiation and progression of both diabetes and periodontitis. The aim of the present study was to validate four miRNAs in saliva as potential predictive biomarkers of periodontal disease among patients with and without diabetes mellitus (DM). MiRNAs were extracted from the saliva of 24 adult subjects with DM and 29 healthy controls. Each group was subdivided into periodontally healthy or having periodontitis. In silico analysis identified 4 miRNAs (miRNA 155, 146 a/b and 203) as immune modulators. The expression of miRNAs-146a/b, 155, and 203 was tested using quantitative PCR. The expression levels in the study groups were compared to explore the effect of diabetes on periodontal status and vice versa. In our cohort, the four miRNAs expression were higher in patients with periodontitis and/or diabetes. miRNA-155 was the most reliable predictors of periodontitis among non-diabetics with an optimum cut-off value of < 8.97 with accuracy = 82.6%. MiRNA 146a, on the other hand, was the only reliable predictor of periodontitis among subjects with diabetes with optimum cut-off value of ≥11.04 with accuracy = 86.1%. The results of the present study concluded that MiRNA-146a and miRNA155 in saliva provide reliable, non-invasive, diagnostic and prognostic biomarkers that can be used to monitor periodontal health status among diabetic and non-diabetic patients

    Bcl10 Regulates Lipopolysaccharide-Induced Pro-Fibrotic Signaling in Bronchial Fibroblasts from Severe Asthma Patients

    Get PDF
    Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-β1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals

    Microbial metabolic genes crucial for S. aureus biofilms: an insight from re-analysis of publicly available microarray datasets

    Get PDF
    Bacterial biofilms are microbial lifestyles found in all environments. Up to 80% of human infections and 60-70% of hospital-acquired infections have a biofilm origin, with Staphylococcus aureus one of the leading causes of these infections. Microorganisms in biofilms exhibit significant antimicrobial resistance which poses important treatment challenges, hence the urgent need to identify novel antibiofilm strategies. Microbes form biofilms in response to various factors, and once these 3-dimentional structures form they are highly recalcitrant to removal. The switch from planktonic lifestyle to the biofilm protected mode of growth results in a phenotypic shift in the behavior of the microorganisms in terms of growth rate and gene expression. Given these changes, investigation of microbial gene expression and their modulation at different stages of biofilm maturation is needed to provide vital insight into the behaviour of biofilm cells. In this study, we analysed publicly available transcriptomic dataset of S. aureus biofilm at different stages of maturation to identify consistently upregulated genes irrespective of the biofilm maturation stage. Our reanalysis identified a total of 6 differentially expressed genes upregulated in both 48 and 144-h old S. aureus biofilms. Functional analysis revealed that these genes encode for proteins which play a role in key microbial metabolic pathways. However, these genes, as yet, are unrelated or poorly studied in the context of biofilm. Moreover, the findings of this in silico work, suggest that these genes may represent potential novel targets for the development of more effective antibiofilm strategies against S. aureus biofilm-associated infections

    Phytic acid: properties and potential applications in dentistry

    Get PDF
    Inositol hexaphosphate (IP6) is the most abundant inositol phosphate in nature and an essential molecule for different biological functions. IP6 has a unique structure granting it distinctive properties; the high negative charge density provides IP6 with an immense chelating ability and valuable antioxidant properties. IP6 is also simple and cost-effective to produce. These features have attracted researchers and entrepreneurs to further study IP6 for a wide variety of applications in areas such as pharmaceutical, food and chemical industries, medicine, pharmacy, nutrition, and dentistry. The interest in IP6 in the dental field unfolded many decades ago following identification of a cariostatic ability and a positive impact on reducing enamel dissolution. Subsequently, IP6’s anti-plaque, anti-calculus and cement-forming properties have been investigated. Despite encouraging findings, there was a phase of decreased attention to IP6 which slowed down research progress. However, the potential use of IP6 has recently been revisited through several publications that provided deeper understanding to its mechanisms of action in the aforementioned applications. Studies have also explored new applications in endodontics, adhesive, preventive and regenerative dentistry, and IP6’s role in improving the characteristics and performance of dental materials. Evidence of the merits of IP6 in dentistry is now substantial, and this narrative review presents and discusses the different applications proposed in the literature and gives insight of future use of IP6 in the fields of orthodontics, implant and pediatric dentistry

    Metagenomic sequencing and reverse transcriptase PCR reveal That mobile phones and environmental surfaces are reservoirs of multidrug-fesistant superbugs and SARS-CoV-2

    Get PDF
    Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community
    corecore