128 research outputs found
Editorial: The impact of climate change on nutrient composition of staple foods and the role of diversification in increasing food system resilience
info:eu-repo/semantics/publishedVersio
Impact of root architecture and transpiration rate on drought tolerance in stay-green sorghum
Sorghum [Sorghum bicolor (L.) Moench] yield loss due to terminal drought stress is common in semiarid regions. Stay-green is a drought adaptation trait, and a deeper understanding of stay-green-associated traits is necessary for sorghum breeding. We hypothesize that the stay-green trait in sorghum may be associated with the root architecture and transpiration rate under drought stress. The objectives were to (i) identify the relationship among stay-green-associated traits, (ii) compare the root system architecture and transpiration rate of stay-green (B35 and 296B) and senescent (BTx623 and R16) genotypes under drought stress, and (iii) quantify the impacts of reproductive stage drought stress on gas exchange and grain yield of stay-green and senescent genotypes. A series of drought experiments were conducted with these genotypes. Under drought stress, the stay-green genotypes had an increased total root length in the top 30–60 cm (18%) and 60–90 cm of soil (45%) than the senescent genotypes. In contrast, under progressive soil drying, stay-green genotypes had a decreased transpiration rate (9%) than senescent genotypes by an early (∼1 h) partial closure of stomata under high vapor pressure deficit conditions. The increased seed yield (43%) in stay-green genotypes is due to an increased photosynthetic rate (30%) and individual seed size (35%) than senescent genotypes. Overall, it is concluded that stay-green phenotypes had two distinct drought adaptive mechanisms: (i) increased root length for increased soil exploration for water and (ii) an early decrease in the transpiration rate to conserve soil moisture. Identifying genomic markers for these traits would accelerate drought-tolerant sorghum breeding
Molecular Mimicry by an F-Box Effector of Legionella pneumophila Hijacks a Conserved Polyubiquitination Machinery within Macrophages and Protozoa
The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts
Differences between self-reported and electronically monitored adherence among patients receiving antiretroviral therapy in a resource-limited setting
Measurement of adherence to antiretroviral therapy (ART) by patient self-report is common in resource-limited settings but widely believed to overstate actual adherence. The extent to which these measures overstate adherence has not been examined among a large patient population
Exploring the sorghum race level diversity utilizing 272 sorghum accessions genomic resources
Due to evolutionary divergence, sorghum race populations exhibit significant
genetic and morphological variation. A k-mer-based sorghum race sequence
comparison identified the conserved k-mers of all 272 accessions from sorghum
and the race-specific genetic signatures identified the gene variability in 10,321
genes (PAVs). To understand sorghum race structure, diversity and
domestication, a deep learning-based variant calling approach was employed
in a set of genotypic data derived from a diverse panel of 272 sorghum
accessions. The data resulted in 1.7 million high-quality genome-wide SNPs
and identified selective signature (both positive and negative) regions through a
genome-wide scan with different (iHS and XP-EHH) statistical methods. We
discovered 2,370 genes associated with selection signatures including 179
selective sweep regions distributed over 10 chromosomes. Co-localization of
these regions undergoing selective pressure with previously reported QTLs and
genes revealed that the signatures of selection could be related to the
domestication of important agronomic traits such as biomass and plant height.
The developed k-mer signatures will be useful in the future to identify the
sorghum race and for trait and SNP markers for assisting in plant
breeding programs
Exploring the sorghum race level diversity utilizing 272 sorghum accessions genomic resources
Due to evolutionary divergence, sorghum race populations exhibit significant genetic and morphological variation. A k-mer-based sorghum race sequence comparison identified the conserved k-mers of all 272 accessions from sorghum
and the race-specific genetic signatures identified the gene variability in 10,321 genes (PAVs). To understand sorghum race structure, diversity and domestication, a deep learning-based variant calling approach was employed
in a set of genotypic data derived from a diverse panel of 272 sorghum accessions. The data resulted in 1.7 million high-quality genome-wide SNPs and identified selective signature (both positive and negative) regions through a
genome-wide scan with different (iHS and XP-EHH) statistical methods. We discovered 2,370 genes associated with selection signatures including 179 selective sweep regions distributed over 10 chromosomes. Co-localization of these regions undergoing selective pressure with previously reported QTLs and genes revealed that the signatures of selection could be related to the domestication of important agronomic traits such as biomass and plant height. The developed k-mer signatures will be useful in the future to identify the
sorghum race and for trait and SNP markers for assisting in plant breeding programs
Innovation in the Breeding of Common Bean Through a Combined Approach of in vitro Regeneration and Machine Learning Algorithms
Common bean is considered a recalcitrant crop for in vitro regeneration and needs a repeatable and efficient in vitro regeneration protocol for its improvement through biotechnological approaches. In this study, the establishment of efficient and reproducible in vitro regeneration followed by predicting and optimizing through machine learning (ML) models, such as artificial neural network algorithms, was performed. Mature embryos of common bean were pretreated with 5, 10, and 20 mg/L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and 1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20 mg/L BAP exerted a negative impact and resulted in minimum shoot regeneration frequency and shoot count, but produced longer shoots. All output variables (shoot regeneration frequency, shoot counts, and shoot length) increased significantly with the enhancement of BAP concentration in the post-treatment medium. Interaction of the pretreatment × post-treatment medium revealed the need for a specific combination for inducing a high shoot regeneration frequency. Higher shoot count and shoot length were achieved from the interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP and 20 mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed that R2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and 0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from 0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to 0.0404 for shoot length from all ML models. Among the utilized models, the multilayer perceptron model provided a better prediction and optimization for all output variables, compared to other models. The achieved results can be employed for the prediction and optimization of plant tissue culture protocols used for biotechnological approaches in a breeding program of common beans
MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host–pathogen relationships and facilitate the development of new therapies and vaccines
- …