368 research outputs found

    Adaptable lightweight structures to minimise material use

    Get PDF
    The optimal use of materials is highly necessary and a key issue for the near future. World’s current demand on resources and waste production has an enormous impact on the environment, which will even dramatically increase when future’s explosion on population takes place. The high contribution to this by the building industry gives it a big responsibility to reduce the concerning figures of material use. This paper describes an approach in which structures are optimised with the use of adaptability. Structural optimisation is normally only done for static structures, while they are loaded in a dynamic way, meaning loadings which are changing in time, level and location. When structures are made adaptable to these dynamic environmental conditions the adaptability can significantly decrease the structural materials needed by increase of its efficiency. Within this paper the structural adaptability is categorized in passive and active adaptability; passive adaptability using a higher deformation acceptance (flexibility) and active adaptability actively controlling the structure with actuators under different circumstances in a static or dynamic adaptive way. The required higher deformation acceptance for passive adaptable optimisation, and the non-efficient influences of actuators for permanent loadings, like self-weight, does focus the research within the field of lightweight structures. Within the chair ISD of the Eindhoven Technical University ‘adaptable lightweight structures’ is one of the key research topics

    Rotational stabilization and destabilization of an optical cavity

    Get PDF
    We investigate the effects of rotation about the axis of an astigmatic two-mirror cavity on its optical properties. This simple geometry is the first example of an optical system that can be destabilized and, more surprisingly, stabilized by rotation. As such, it has some similarity with both the Paul trap and the gyroscope. We illustrate the effects of rotational (de)stabilization of a cavity in terms of the spatial structure and orbital angular momentum of its modes.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review

    Reducing the lateral dose penumbra in IMPT by incorporating transmission pencil beams

    Get PDF
    Objective: In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission (‘shoot through’) pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams (‘IMPT&amp;TPB’) could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams. Approach: Our system for automated multi-criteria IMPT plan optimisation was extended for combined optimisation of BPs and TPBs. The system generates for each patient a Pareto-optimal plan using a generic ‘wish-list’ with prioritised planning objectives and hard constraints. For eight nasopharynx cancer patients (NPC) and eight oropharynx cancer (OPC) patients, the IMPT&amp;TPB plan was compared to the competing conventional IMPT plan with only Bragg peaks, which was generated with the same optimiser, but without transmission pencil beams. Main results: Clinical OAR and target constraints were met in all plans. By allowing transmission pencil beams in the optimisation, on average 14 of the 25 investigated OAR plan parameters significantly improved for NPC, and 9 of the 17 for OPC, while only one OPC parameter showed small but significant deterioration. Non-significant differences were found in the remaining parameters. In NPC, cochlea Dmean reduced by up to 17.5 Gy and optic nerve D2% by up to 11.1 Gy. Conclusion: Compared to IMPT, IMPT&amp;TPB resulted in comparable target coverage with overall superior OAR sparing, the latter originating from steeper dose fall-offs close to OARs.</p

    Continuous mode cooling and phonon routers for phononic quantum networks

    Get PDF
    We study the implementation of quantum state transfer protocols in phonon networks, where in analogy to optical networks, quantum information is transmitted through propagating phonons in extended mechanical resonator arrays or phonon waveguides. We describe how the problem of a non-vanishing thermal occupation of the phononic quantum channel can be overcome by implementing optomechanical multi- and continuous mode cooling schemes to create a 'cold' frequency window for transmitting quantum states. In addition, we discuss the implementation of phonon circulators and switchable phonon routers, which rely on strong coherent optomechanical interactions only, and do not require strong magnetic fields or specific materials. Both techniques can be applied and adapted to various physical implementations, where phonons coupled to spin or charge based qubits are used for on-chip networking applications.Comment: 33 pages, 8 figures. Final version, a few minor changes and updated reference

    SISS-MCO:large scale sparsity-induced spot selection for fast and fully-automated robust multi-criteria optimisation of proton plans

    Get PDF
    Objective. Intensity modulated proton therapy (IMPT) is an emerging treatment modality for cancer. However, treatment planning for IMPT is labour-intensive and time-consuming. We have developed a novel approach for multi-criteria optimisation (MCO) of robust IMPT plans (SISS-MCO) that is fully automated and fast, and we compare it for head and neck, cervix, and prostate tumours to a previously published method for automated robust MCO (IPBR-MCO, van de Water 2013). Approach. In both auto-planning approaches, the applied automated MCO of spot weights was performed with wish-list driven prioritised optimisation (Breedveld 2012). In SISS-MCO, spot weight MCO was applied once for every patient after sparsity-induced spot selection (SISS) for pre-selection of the most relevant spots from a large input set of candidate spots. IPBR-MCO had several iterations of spot re-sampling, each followed by MCO of the weights of the current spots. Main results. Compared to the published IPBR-MCO, the novel SISS-MCO resulted in similar or slightly superior plan quality. Optimisation times were reduced by a factor of 6 i.e. from 287 to 47 min. Numbers of spots and energy layers in the final plans were similar. Significance. The novel SISS-MCO automatically generated high-quality robust IMPT plans. Compared to a published algorithm for automated robust IMPT planning, optimisation times were reduced on average by a factor of 6. Moreover, SISS-MCO is a large scale approach; this enables optimisation of more complex wish-lists, and novel research opportunities in proton therapy.</p

    SISS-MCO:large scale sparsity-induced spot selection for fast and fully-automated robust multi-criteria optimisation of proton plans

    Get PDF
    Objective. Intensity modulated proton therapy (IMPT) is an emerging treatment modality for cancer. However, treatment planning for IMPT is labour-intensive and time-consuming. We have developed a novel approach for multi-criteria optimisation (MCO) of robust IMPT plans (SISS-MCO) that is fully automated and fast, and we compare it for head and neck, cervix, and prostate tumours to a previously published method for automated robust MCO (IPBR-MCO, van de Water 2013). Approach. In both auto-planning approaches, the applied automated MCO of spot weights was performed with wish-list driven prioritised optimisation (Breedveld 2012). In SISS-MCO, spot weight MCO was applied once for every patient after sparsity-induced spot selection (SISS) for pre-selection of the most relevant spots from a large input set of candidate spots. IPBR-MCO had several iterations of spot re-sampling, each followed by MCO of the weights of the current spots. Main results. Compared to the published IPBR-MCO, the novel SISS-MCO resulted in similar or slightly superior plan quality. Optimisation times were reduced by a factor of 6 i.e. from 287 to 47 min. Numbers of spots and energy layers in the final plans were similar. Significance. The novel SISS-MCO automatically generated high-quality robust IMPT plans. Compared to a published algorithm for automated robust IMPT planning, optimisation times were reduced on average by a factor of 6. Moreover, SISS-MCO is a large scale approach; this enables optimisation of more complex wish-lists, and novel research opportunities in proton therapy.</p

    The impact of participation restrictions on everyday life in long-term colorectal cancer survivors in the EnCoRe study:A mixed-method study

    Get PDF
    Purpose: Knowledge about long-term colorectal cancer (CRC) or treatment related health and functioning problems and on its impact on participation of CRC survivors in domestic life and in society is limited. We aimed to explore the nature and impact of cancer (treatment) related participation restrictions on everyday life of long-term CRC survivors, their current satisfaction with participation, and associations of health and functioning problems with participation satisfaction, using the International Classification of Functioning, Disability and Health (ICF) to comprehensively study participation.Method: Mixed-method study in 2-10 years post-diagnosis stage I-III CRC survivors (n = 151) from the cross-sectional part of the EnCoRe study. Participation restrictions were explored by semi-structured interviews in a subsample reporting participation restrictions (n = 10). Role functioning (SF36-Health Survey), fatigue (Checklist Individual Strength), and peripheral neuropathy symptoms (EORTC QLQ-CIPN20) were assessed in all participants and associations with self-reported participation satisfaction were analyzed by multivariable logistic regression models.Results: 19% of CRC survivors reported dissatisfaction with participation. Participation restrictions were reported for interpersonal relationships, work/employment, and social/civic life. CRC survivors reporting better physical and emotional role functioning were significantly less likely to be dissatisfied with their participation, whereas survivors reporting higher levels of fatigue or more peripheral neuropathy symptoms were more likely to be dissatisfied with participation.Conclusions: Colorectal cancer (treatment) related health and functioning problems negatively impacts the ability of nearly 1 in 5 long-term CRC survivors to participate in everyday life situations and their satisfaction with participation. Follow-up care needs to be able to identify and address these problems.</p

    L'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCam

    Get PDF
    We present the first observations obtained with the L'-band AGPM vortex coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond subwavelength gratings. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working angles, down to 0.09 arcseconds in the case of LBTI/LMIRCam in the L' band. During the first hours on sky, we observed the young A5V star HR\,8799 with the goal to demonstrate the AGPM performance and assess its relevance for the ongoing LBTI planet survey (LEECH). Preliminary analyses of the data reveal the four known planets clearly at high SNR and provide unprecedented sensitivity limits in the inner planetary system (down to the diffraction limit of 0.09 arcseconds).Comment: 9 pages, 4 figures, SPIE proceeding

    Three years of harvest with the vector vortex coronagraph in the thermal infrared

    Full text link
    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.Comment: To appear in SPIE proceedings vol. 990
    • …
    corecore