42 research outputs found

    On the difference-to-sum power ratio of speech and wind noise based on the Corcos model

    Full text link
    The difference-to-sum power ratio was proposed and used to suppress wind noise under specific acoustic conditions. In this contribution, a general formulation of the difference-to-sum power ratio associated with a mixture of speech and wind noise is proposed and analyzed. In particular, it is assumed that the complex coherence of convective turbulence can be modelled by the Corcos model. In contrast to the work in which the power ratio was first presented, the employed Corcos model holds for every possible air stream direction and takes into account the lateral coherence decay rate. The obtained expression is subsequently validated with real data for a dual microphone set-up. Finally, the difference-to- sum power ratio is exploited as a spatial feature to indicate the frame-wise presence of wind noise, obtaining improved detection performance when compared to an existing multi-channel wind noise detection approach.Comment: 5 pages, 3 figures, IEEE-ICSEE Eilat-Israel conference (special session

    Broadband DOA estimation using Convolutional neural networks trained with noise signals

    Full text link
    A convolution neural network (CNN) based classification method for broadband DOA estimation is proposed, where the phase component of the short-time Fourier transform coefficients of the received microphone signals are directly fed into the CNN and the features required for DOA estimation are learnt during training. Since only the phase component of the input is used, the CNN can be trained with synthesized noise signals, thereby making the preparation of the training data set easier compared to using speech signals. Through experimental evaluation, the ability of the proposed noise trained CNN framework to generalize to speech sources is demonstrated. In addition, the robustness of the system to noise, small perturbations in microphone positions, as well as its ability to adapt to different acoustic conditions is investigated using experiments with simulated and real data.Comment: Published in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 201

    Simulating Multi-channel Wind Noise Based on the Corcos Model

    Full text link
    A novel multi-channel artificial wind noise generator based on a fluid dynamics model, namely the Corcos model, is proposed. In particular, the model is used to approximate the complex coherence function of wind noise signals measured with closely-spaced microphones in the free-field and for time-invariant wind stream direction and speed. Preliminary experiments focus on a spatial analysis of recorded wind noise signals and the validation of the Corcos model for diverse measurement set-ups. Subsequently, the Corcos model is used to synthetically generate wind noise signals exhibiting the desired complex coherence. The multi-channel generator is designed extending an existing single-channel generator to create N mutually uncorrelated signals, while the predefined complex coherence function is obtained exploiting an algorithm developed to generate multi-channel non-stationary noise signals under a complex coherence constraint. Temporal, spectral and spatial characteristics of synthetic signals match with those observed in measured wind noise. The artificial generation overcomes the time-consuming challenge of collecting pure wind noise samples for noise reduction evaluations and provides flexibility in the number of generated signals used in the simulations.Comment: 5 pages, 2 figures, IWAENC 201

    Multi-scale aggregation of phase information for reducing computational cost of CNN based DOA estimation

    Full text link
    In a recent work on direction-of-arrival (DOA) estimation of multiple speakers with convolutional neural networks (CNNs), the phase component of short-time Fourier transform (STFT) coefficients of the microphone signal is given as input and small filters are used to learn the phase relations between neighboring microphones. Due to this chosen filter size, M−1M-1 convolution layers are required to achieve the best performance for a microphone array with M microphones. For arrays with large number of microphones, this requirement leads to a high computational cost making the method practically infeasible. In this work, we propose to use systematic dilations of the convolution filters in each of the convolution layers of the previously proposed CNN for expansion of the receptive field of the filters to reduce the computational cost of the method. Different strategies for expansion of the receptive field of the filters for a specific microphone array are explored. With experimental analysis of the different strategies, it is shown that an aggressive expansion strategy results in a considerable reduction in computational cost while a relatively gradual expansion of the receptive field exhibits the best DOA estimation performance along with reduction in the computational cost.Comment: arXiv admin note: text overlap with arXiv:1807.1172

    Modal Decomposition of Feedback Delay Networks

    Full text link
    Feedback delay networks (FDNs) belong to a general class of recursive filters which are widely used in sound synthesis and physical modeling applications. We present a numerical technique to compute the modal decomposition of the FDN transfer function. The proposed pole finding algorithm is based on the Ehrlich-Aberth iteration for matrix polynomials and has improved computational performance of up to three orders of magnitude compared to a scalar polynomial root finder. We demonstrate how explicit knowledge of the FDN's modal behavior facilitates analysis and improvements for artificial reverberation. The statistical distribution of mode frequency and residue magnitudes demonstrate that relatively few modes contribute a large portion of impulse response energy
    corecore