10 research outputs found
High Performance Multicell Series Inverter-Fed Induction Motor Drive
This document is the Accepted Manuscript version of the following article: M. Khodja, D. Rahiel, M. B. Benabdallah, H. Merabet Boulouiha, A. Allali, A. Chaker, and M. Denai, ‘High-performance multicell series inverter-fed induction motor drive’, Electrical Engineering, Vol. 99 (3): 1121-1137, September 2017. The final publication is available at Springer via DOI: https://doi.org/10.1007/s00202-016-0472-4.The multilevel voltage-source inverter (VSI) topology of the series multicell converter developed in recent years has led to improved converter performance in terms of power density and efficiency. This converter reduces the voltage constraints between all cells, which results in a lower transmission losses, high switching frequencies and the improvement of the output voltage waveforms. This paper proposes an improved topology of the series multicell inverter which minimizes harmonics, reduces torque ripples and losses in a variable-speed induction motor drive. The flying capacitor multilevel inverter topology based on the classical and modified phase shift pulse width modulation (PSPWM, MPSPWM) techniques are applied in this paper to minimize harmonic distortion at the inverter output. Simulation results are presented for a 2-kW induction motor drive and the results obtained demonstrate reduced harmonics, improved transient responses and reference tracking performance of the voltage in the induction motor and consequently reduced torque ripplesPeer reviewe
Pursuing optimal electric machines transient diagnosis: The adaptive slope transform
[EN] The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish "Ministerio de Economia y Competitividad" in the framework of the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" (Project reference DPI2014-60881-R).Pons Llinares, J.; Riera-Guasp, M.; Antonino-Daviu, JA.; Habetler, T. (2016). Pursuing optimal electric machines transient diagnosis: The adaptive slope transform. Mechanical Systems and Signal Processing. 80:553-569. doi:10.1016/j.ymssp.2016.05.003S5535698