1,240 research outputs found
Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model
Capturing general deforming scenes is crucial for many computer graphics andvision applications, and it is especially challenging when only a monocular RGBvideo of the scene is available. Competing methods assume dense point tracks,3D templates, large-scale training datasets, or only capture small-scaledeformations. In contrast to those, our method, Ub4D, makes none of theseassumptions while outperforming the previous state of the art in challengingscenarios. Our technique includes two new, in the context of non-rigid 3Dreconstruction, components, i.e., 1) A coordinate-based and implicit neuralrepresentation for non-rigid scenes, which enables an unbiased reconstructionof dynamic scenes, and 2) A novel dynamic scene flow loss, which enables thereconstruction of larger deformations. Results on our new dataset, which willbe made publicly available, demonstrate the clear improvement over the state ofthe art in terms of surface reconstruction accuracy and robustness to largedeformations. Visit the project page https://4dqv.mpi-inf.mpg.de/Ub4D/.<br
Structural basis for the antagonistic roles of RNP-8 and GLD-3 in GLD-2 poly(A)-polymerase activity
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 resolution structure and biochemical characterization of a GLD-2-RNP-8core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes
Effects Of Iron Implantation On The Aqueous Corrosion Of Magnesium
The influence of the implantation of iron ions on the corrosion of magnesium and an AlZn-rich magnesium alloy (AZ91C) has been studied. Anodic polarization measurements in a dilute chloride-containing alkaline solution were used to evaluate corrosion resistance. A range of ion energies (50-180 keV) and doses (1016-2 x 1017 Fe+ ions cm-2) have been evaluated. Both the iron-implanted pure magnesium and the alloy AZ91C gave improved polarization measurements. A systematic positive shift of the open-circuit potential with increasing iron dose was found. In AZ91C at a dose of 1017 Fe+ ions cm-2, there was a + 0.6 V more noble shift in the open-circuit potential and a nearly equivalent shift of the pitting potential. In addition, there was a reduction of more than an order of magnitude in the current densities at all potentials. The ion energy did not have a large effect on the corrosion behavior. Annealing the samples did not further improve the corrosion resistance. The results from characterizing the corroded samples using Auger spectroscopy and scanning electron microscopy are also presented. © 1985
1D numerical and experimental investigations of an ultralean pre-chamber engine
In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses. The SI engine is experimentally investigated with and without the employment of the PC with the aim to analyze the real gain of this innovative combustion system. For both configurations, the engine is tested at various speeds, loads, and air-fuel ratios. A commercial gasoline fuel is directly injected into the Main Chamber (MC), while the PC is fed in a passive or active mode. Compressed Natural Gas (CNG) or Hydrogen (H2) is used in the actual case. A 1D model of the engine under study is implemented in a commercial modeling framework and is integrated with “in-house developed” sub-models for the simulation of the combustion and turbulence phenomena occurring in this unconventional engine. The numerical approach proves to reproduce the experimental data with good accuracy, without requiring any case-dependent tuning of the model constants. Both the numerical and experimental results show an improvement of the indicated thermal efficiency of the active PC, compared to the conventional ignition device, especially at high loads and low speeds. The injection of H2 into the PC leads to a significant benefit only with very lean mixtures. With the passive fueling of the PC, the lean-burn limit is less extended, with the consequent lower improvement potential for thermal efficiency
State of the Art in Dense Monocular Non-Rigid 3D Reconstruction
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular2D image observations is a long-standing and actively researched area ofcomputer vision and graphics. It is an ill-posed inverse problem,since--without additional prior assumptions--it permits infinitely manysolutions leading to accurate projection to the input 2D images. Non-rigidreconstruction is a foundational building block for downstream applicationslike robotics, AR/VR, or visual content creation. The key advantage of usingmonocular cameras is their omnipresence and availability to the end users aswell as their ease of use compared to more sophisticated camera set-ups such asstereo or multi-view systems. This survey focuses on state-of-the-art methodsfor dense non-rigid 3D reconstruction of various deformable objects andcomposite scenes from monocular videos or sets of monocular views. It reviewsthe fundamentals of 3D reconstruction and deformation modeling from 2D imageobservations. We then start from general methods--that handle arbitrary scenesand make only a few prior assumptions--and proceed towards techniques makingstronger assumptions about the observed objects and types of deformations (e.g.human faces, bodies, hands, and animals). A significant part of this STAR isalso devoted to classification and a high-level comparison of the methods, aswell as an overview of the datasets for training and evaluation of thediscussed techniques. We conclude by discussing open challenges in the fieldand the social aspects associated with the usage of the reviewed methods.<br
Transport of Proteins into Mitochondria
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details.
1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant.
2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000.
3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position.
4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding.
These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein
Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by Streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by Streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis
Predictability of Self-Organizing Systems
We study the predictability of large events in self-organizing systems. We
focus on a set of models which have been studied as analogs of earthquake
faults and fault systems, and apply methods based on techniques which are of
current interest in seismology. In all cases we find detectable correlations
between precursory smaller events and the large events we aim to forecast. We
compare predictions based on different patterns of precursory events and find
that for all of the models a new precursor based on the spatial distribution of
activity outperforms more traditional measures based on temporal variations in
the local activity.Comment: 15 pages, plain.tex with special macros included, 4 figure
Energetic Components of Cooperative Protein Folding
A new lattice protein model with a four-helix bundle ground state is analyzed
by a parameter-space Monte Carlo histogram technique to evaluate the effects of
an extensive variety of model potentials on folding thermodynamics. Cooperative
helical formation and contact energies based on a 5-letter alphabet are found
to be insufficient to satisfy calorimetric and other experimental criteria for
two-state folding. Such proteinlike behaviors are predicted, however, by models
with polypeptide-like local conformational restrictions and
environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press
- …