32 research outputs found

    Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Cuscuta </it>L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.</p> <p>Results</p> <p>Here we present a well-supported phylogeny of <it>Cuscuta </it>using sequences of the nuclear ribosomal internal transcribed spacer and plastid <it>rps2</it>, <it>rbcL </it>and <it>matK </it>from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus <it>Cuscuta </it>is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with <it>rbcL </it>exhibiting even higher levels of purifying selection in <it>Cuscuta </it>than photosynthetic relatives. Nuclear genome size is highly variable within <it>Cuscuta</it>, particularly within subgenus <it>Grammica</it>, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.</p> <p>Conclusion</p> <p>Some morphological characters traditionally used to define major taxonomic splits within <it>Cuscuta </it>are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of <it>Cuscuta </it>retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.</p

    DXS106 AND DXS559 FLANK THE X-LINKED DYSTONIA-PARKINSONISM LOCUS, DYT3

    No full text
    The locus (DYT3) underlying the X-linked dystonia-parkinsonism syndrome (XDP) was delineated within proximal Xq12-Xq13.1 by analysis of linkage, allelic association, and haplotypes. Short tandem repeat polymorphisms at loci DXS227, DXS559, DXS453, DXS106, DXS339, and DXS135 were studied. The occurrence of a recombination within a three-generation family established DXS559 as the distal flanking marker of DYT3. /phi/ and /delta/ values were determined as indicators of the degree of allelic association between DYT3 and the six marker loci. In addition, haplotype analysis was performed at the loci studied. The findings establish DXS106 as the proximal flanking marker of DYT3. Given an approximate distance between DXS106 and DXS559 of 3.0 Mb, isolation of DYT3 is now feasible by positional cloning techniques

    Assignment of the dystonia-parkinsonism syndrome locus, DYT3, to a small region within a 1.8-Mb YAC contig of Xq13.1.

    No full text
    A YAC contig was constructed of Xq13.1 in order to sublocalize the X-linked dystonia-parkinsonism (XDP) syndrome locus, DYT3. The contig spans a region of approximately 1.8 Mb and includes loci DXS453/DXS348/IL2R gamma/GJB1/CCG1/DXS559. For the construction of the contig, nine sequence-tagged sites and four short tandem repeat polymorphisms (STRPs) were isolated. The STRPs, designated as 4704#6 (DXS7113), 4704#7 (DXS7114), 67601 (DXS7117), and B4Pst (DXS7119) were assigned to a region flanked by DXS348 proximally and by DXS559 distally. Their order was DXS348/4704 #6/4704 #7/67601/B4Pst/DXS559. They were applied to the analysis of allelic association and of haplotypes in 47 not-obviously-related XDP patients and in 105 Filipino male controls. The same haplotype was found at loci 67601 (DXS7117) and B4Pst (DXS7119) in 42 of 47 patients. This percentage of common haplotypes decreased at the adjacent loci. The findings, together with the previous demonstration of DXS559 being the distal flanking marker of DYT3, assign the disease locus to a small region in Xq13.1 defined by loci 67601 (DXS7117) and B4Pst (DXS7119). The location of DYT3 was born out by the application of a newly developed likelihood method for the analysis of linkage disequilibrium

    Improved HIV-1 RNA quantitation by COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 using a novel dual-target approach.

    No full text
    BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated
    corecore