9 research outputs found

    Generation of aorta transcript atlases of wild-type and apolipoprotein E-null mice by laser capture microdissection-based mRNA expression microarrays.

    No full text
    Atherosclerosis is a transmural chronic inflammatory disease of medium and large arteries. Though it is well recognized that immune responses contribute to atherosclerosis, it remains unclear whether these responses are carried out in secondary lymphoid organs such as the spleen and lymph nodes and/or within the arterial wall. Arteries are composed of three major layers, i.e., the laminae intima, media, and adventitia. However, each of these layers may play different roles in arterial wall biology and atherogenesis. We identified well-structured artery tertiary lymphoid organs (ATLOs) in the abdominal aorta adventitia but not in the intima of aged apolipoprotein E-null (ApoE(-/-)) mice. These observations suggested that disease-associated immune responses are highly territorialized within the arterial wall and that the adventitia may play distinct and hitherto unrecognized roles. Here, we set out to apply laser capture microdissection (LCM) to dissect plaque, media, adventitia, and adjacent aorta-draining lymph nodes (LN) in aged ApoE(-/-) mice in attempts to establish the territoriality of atherosclerosis immune responses. Using whole-genome mRNA expression microarrays of arterial wall tissues, we constructed robust transcript atlases of wild-type and ApoE(-/-) mouse aortas. Data were deposited in the National Center for Biotechnology Information's gene expression omnibus (GEO) and are accessible to the public through the Internet. These transcript atlases are anticipated to prove valuable to address a wide scope of issues ranging from atherosclerosis immunity and inflammation to the role of single genes in regulating arterial wall remodeling. This chapter presents protocols for LCM of mouse aorta and microarray expression analysis from LCM-isolated aorta laminae

    Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis.

    No full text
    Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E-deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node-like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4(+) and CD8(+) effector and memory T cells, natural and induced CD4(+) regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall-derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis

    Comparison of gene expression profiles between human and mouse monocyte subsets.

    No full text
    Blood of both humans and mice contains 2 main monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 270 genes in humans and 550 genes in mice were differentially expressed between subsets by 2-fold or more. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous of these differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the 2 species' subsets, including CD36, CD9, and TREM-1. Other differences included a prominent peroxisome proliferator-activated receptor gamma (PPARgamma) signature in mouse monocytes, which is absent in humans, and strikingly opposed patterns of receptors involved in uptake of apoptotic cells and other phagocytic cargo between human and mouse monocyte subsets. Thus, whereas human and mouse monocyte subsets are far more broadly conserved than currently recognized, important differences between the species deserve consideration when models of human disease are studied in mice

    Mouse Aorta Smooth Muscle Cells Differentiate Into Lymphoid Tissue Organizer-Like Cells on Combined Tumor Necrosis Factor Receptor-1/Lymphotoxin beta-Receptor NF-kappa B Signaling

    No full text
    OBJECTIVE: Mouse aorta smooth muscle cells (SMC) express tumor necrosis factor receptor superfamily member 1A (TNFR-1) and lymphotoxin β-receptor (LTβR). Circumstantial evidence has linked the SMC LTβR to tertiary lymphoid organogenesis in hyperlipidemic mice. Here, we explored TNFR-1 and LTβR signaling in cultured SMC. METHODS AND RESULTS: TNFR-1 signaling activated the classical RelA NF-κB pathway, whereas LTβR signaling activated the classical RelA and alternative RelB NF-κB pathways, and both signaling pathways synergized to enhance p100 inhibitor processing to the p52 subunit of NF-κB. Microarrays showed that simultaneous TNFR-1/LTβR activation resulted in elevated mRNA encoding leukocyte homeostatic chemokines CCL2, CCL5, CXCL1, and CX3CL1. Importantly, SMC acquired features of lymphoid tissue organizers, which control tertiary lymphoid organogenesis in autoimmune diseases through hyperinduction of CCL7, CCL9, CXCL13, CCL19, CXCL16, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1. TNFR-1/LTβR cross-talk resulted in augmented secretion of lymphorganogenic chemokine proteins. Supernatants of TNFR-1/LTβR–activated SMC markedly supported migration of splenic T cells, B cells, and macrophages/dendritic cells. Experiments with ltbr(−/−) SMC indicated that LTβR-RelB activation was obligatory to generate the lymphoid tissue organizer phenotype. CONCLUSION: SMC may participate in the formation of tertiary lymphoid tissue in atherosclerosis by upregulation of lymphorganogenic chemokines involved in T-lymphocyte, B-lymphocyte, and macrophage/dendritic cell attraction
    corecore