43 research outputs found

    Die Stoffwechselwirkungen der SchilddrĂĽsenhormone

    Get PDF

    Competitive fitness of essential gene knockdowns reveals a broad-spectrum antibacterial inhibitor of the cell division protein FtsZ

    No full text
    To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development

    Lightwave analog links for LHC detector frontends

    No full text
    The requirements on optical links for transferring analog and digital signals from the detector front-ends to the readout electronics at future high-luminosity colliders are reviewed. The advantages of external modulation techniques are discussed. An outline is given of the the R&D programme recently started at CERN by a collaboration involving high-energy physics institutes, optoelectronics research laboratories and industry, in order to develop electro-optic intensity modulator arrays, particularly for analogue applications, and to investigate the feasibility of volume production. The design of multichannel demonstrators in lithium niobate and III-V semiconductor technology is described. Preliminary results of the performance measurements are presented
    corecore