9 research outputs found

    Thermal acclimation of tropical coral reef fishes to global heat waves

    Get PDF
    As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by \u3e100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species

    Adapt, move, or die: how will tropical coral reef fishes cope with ocean warming?

    Get PDF
    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade more than 365 tropical stenothermal fish species have been documented moving pole-ward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally-sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least six weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope, and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e., 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating pole-ward migration of species

    Adapt, move, or die: how will tropical coral reef fishes cope with ocean warming?

    No full text
    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade more than 365 tropical stenothermal fish species have been documented moving pole-ward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally-sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least six weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope, and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e., 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating pole-ward migration of species

    Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    No full text
    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature (T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns

    Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    No full text
    Abstract As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature (T pref ), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterus quinquelineatus) was exposed to 28°C (average at collection site) or 32°C (predicted end-ofcentury) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25°C, approximating summer average temperatures in the wild. However, 32°C fish moved more frequently to correct their thermal environment than 28°C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns

    Adapt, move, or die: how will tropical coral reef fishes cope with ocean warming?

    No full text
    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade more than 365 tropical stenothermal fish species have been documented moving pole-ward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally-sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least six weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope, and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e., 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating pole-ward migration of species

    Review of the ecosystem service implications of mangrove encroachment into salt marshes

    No full text
    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change
    corecore